Computational Neuroscience Track worksheet
(14 courses required or 15 for Honors)

Math and Statistics (3 courses)
☐ 3. Statistics 110

Computer Science (2 courses)
☐ 4. CS 50
☐ 5. CS 51 or 61

Foundational Biology (2 courses)
☐ 6. Any one of the following (courses with labs are underlined):

LS 1a or LPSA	Chemistry, Molecular/Cell Bio, LS 1b Genetics, Genomics, Evolution
LS 2	Evolutionary Human Physiology and Anatomy, HEB 1420 Human Anatomy
MCB 60	Cell Biology, MCB 63 Biochemistry, MCB 64 Cell Biology,
MCB 65	Physical Biochemistry, MCB 68 Cell Bio & Microscopy
OEB 50	Population Genetics, OEB 53 Evolutionary Biology

☐ 7. One approved 100-level HEB, MCB, OEB, or SCRB course (or any second course from the box above)

Neurobiology (5 courses)
☐ 8. Neuro 80: Neurobiology of Behavior
☐ 9. Neuro 105, Neuro 115, or Neuro 120
☐ 10. Additional Quantitative Elective:

APMTH 226	Neural Computation, BME 130 Neural Control of Movement
Neuro 105	Systems Neuroscience, Neuro 115 Cellular Basis of Neuronal Function
Neuro 120	Introductory Computational Neuroscience, Neuro 130 Visual Recognition
MCB 131	Computational Neuroscience, Neuro 140 Artificial and Biological Intelligence
Neuro 141	Physics of Sensory Systems, Psych 1401 Cognitive Computational Neuro

Modeling and Analysis (2 courses) Any two courses from our approved list:
https://www.mcb.harvard.edu/undergraduate/neuroscience/neuro-courses/?course-button=compneurotrack

☐ 13. _____________________________
☐ 14. _____________________________

Honors – optional
☐ 15. Neuro 91 Laboratory Research or LS100 Experimental Research
or completion of a senior thesis
Computational Track Electives

The following list of classes count as modeling/analysis electives for students on the Computational Neuroscience Track. Additional courses may be petitioned for approval.

APM 50: Intro to Applied Mathematics
APM 104: Series Expansions and Complex Analysis
APM 105: Ordinary and Partial Differential Equations
APM 107: Graph Theory and Combinatorics
APM 108: Nonlinear Dynamical Systems
APM 111: Intro Scientific Computing
APM 120: Applied Linear Algebra and Big Data

CS 108: Intelligent Systems: Design and Ethical Challenges
CS 109: Intro to Data Science
CS 121: Intro to Theory of Computation
CS 124: Data Structures and Algorithms
CS 125: Algorithms and Complexity
CS 143: Computer Networks
CS 181: Machine Learning
CS 182: Artificial Intelligence

ENG-SCI/APM 115: Mathematical Modeling
ENG-SCI/APM 121: Intro to Optimization
ENG-SCI 155: Biological Signal Processing
ENG-SCI/APM 158: Feedback Control of Dynamical Systems

MCB 111: Mathematics in Biology
MCB 112: Biological Data Analysis
MCB 198: Advanced Math Techniques for Modern Biology
MCB 199: Statistical Thermodynamics and Quantitative Biology

Psych 2030: Bayesian Data Analysis

Stat 108: Computing Software
Stat 111: Theoretical Inference
Stat 121: Data Science
Stat 131: Time Series
Stat 139: Linear Models
Stat 171: Stochastic Processes
Stat 220: Bayesian Data Analysis
Stat 149: Generalized Linear Models