Computational Neuroscience Track worksheet
(14 courses required or 15 for Honors)

Math and Statistics (3 courses)
☐ 3. Statistics 110

Computer Science (2 courses)
☐ 4. CS 50
☐ 5. CS 51 or 61

Foundational Biology (2 courses)
☐ 6. Any one of the following:

<table>
<thead>
<tr>
<th>LS 1a or LPSA</th>
<th>LS 2</th>
<th>MCB 60</th>
<th>MCB 63</th>
<th>MCB 64</th>
<th>MCB 65</th>
<th>MCB 68</th>
<th>OEB 53</th>
<th>SCRB 20</th>
</tr>
</thead>
</table>

☐ 7. One approved 100-level HEB, MCB, OEB, or SCRB course (or any second course from the box above)

Neurobiology (5 courses)
☐ 8. MCB 80 or 81 Neurobiology of Behavior
☐ 9. MCB 105, MCB 115, or Neuro 120
☐ 10. Additional Quantitative Elective:

<table>
<thead>
<tr>
<th>BME 130</th>
<th>MCB 105</th>
<th>MCB 115</th>
<th>MCB 131</th>
<th>Neuro 120</th>
<th>Neuro 130</th>
<th>Physics 141</th>
<th>Psych 1401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Control of Movement</td>
<td>Systems Neuroscience</td>
<td>Cellular Basis of Neuronal Function</td>
<td>Computational Neuroscience</td>
<td>Introductory Computational Neuroscience</td>
<td>Visual Recognition</td>
<td>Physics of Sensory Systems</td>
<td>Computational Cognitive Neuroscience</td>
</tr>
</tbody>
</table>

Modeling and Analysis (2 courses) Any two courses from our approved list:
https://www.mcb.harvard.edu/undergraduate/neurobiology/neurobio-courses/?course-button=compneurotrack

☐ 13. ________________________
☐ 14. ________________________

Honors – optional
☐ 15. Neurobiology 91 Laboratory Research or LS100 Experimental Research or completion of a senior thesis
Computational Track Electives

The following list of classes count as modeling/analysis electives for students on the Computational Neuroscience Track. Additional courses may be petitioned for approval.

Stat 108: Computing Software
Stat 111: Theoretical Inference
Stat 121: Data Science
Stat 131: Time Series
Stat 139: Linear Models
Stat 171: Stochastic Processes
Stat 220: Bayesian Data Analysis
Stat 149: Generalized Linear Models

ENG-SCI 115/APM: Mathematical Modeling
ENG-SCI/APM 121: Intro to Optimization
ENG-SCI 155: Biological Signal Processing
ENG-SCI/APM 158: Feedback Control of Dynamical Systems

MCB 111: Mathematics in Biology
MCB 112: Biological Data Analysis
MCB 198: Advanced Math Techniques for Modern Biology

APM 50: Intro to Applied Mathematics
APM 104: Series Expansions and Complex Analysis
APM 105: Ordinary and Partial Differential Equations
APM 107: Graph Theory and Combinatorics
APM 108: Nonlinear Dynamical Systems
APM 111: Intro Scientific Computing
APM 120: Applied Linear Algebra and Big Data

CS 108: Intelligent Systems: Design and Ethical Challenges
CS 109: Intro to Data Science
CS 121: Intro to Theory of Computation
CS 124: Data Structures and Algorithms
CS 125: Algorithms and Complexity
CS 143: Computer Networks
CS 181: Machine Learning
CS 182: Artificial Intelligence