Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina

Graphical Abstract

Highlights

- Macaque fovea and peripheral retina each contain >65 cell types

- Most types correspond between regions but differ in proportions and gene expression

- Greater conservation of interneuron than ganglion cell types between macaque and mouse

- Cell-type- and region-specific expression of genes implicated in human blindness

Authors

Yi-Rong Peng, Karthik Shekhar, Wenjun Yan, ..., Michael Tri. H. Do, Aviv Regev, Joshua R. Sanes

Correspondence
sanesj@mcb.harvard.edu

In Brief

Single-cell-based analysis provides a comprehensive molecular and cellular taxonomy of the primate retina.
Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina

Yi-Rong Peng,1,6 Karthik Shekhar,2,6 Wenjun Yan,1 Dustin Hermann,1 Anna Sappington,2 Gregory S. Bryman,3 Tavé van Zyl,4 Michael Tri. H. Do,3 Aviv Regev,2,6 and Joshua R. Sanes1,7,*

1Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
2Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
3F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital Harvard Medical School, Boston, MA 02115, USA
4Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
5Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
6These authors contributed equally
7Lead Contact
*Correspondence: sanesj@mcb.harvard.edu
https://doi.org/10.1016/j.cell.2019.01.004

SUMMARY

High-acuity vision in primates, including humans, is mediated by a small central retinal region called the fovea. As more accessible organisms lack a fovea, its specialized function and its dysfunction in ocular diseases remain poorly understood. We used 165,000 single-cell RNA-seq profiles to generate comprehensive cellular taxonomies of macaque fovea and peripheral retina. More than 80% of >60 cell types match between the two regions but exhibit substantial differences in proportions and gene expression, some of which we relate to functional differences. Comparison of macaque retinal types with those of mice reveals that interneuron types are tightly conserved. In contrast, projection neuron types and programs diverge, despite exhibiting conserved transcription factor codes. Key macaque types are conserved in humans, allowing mapping of cell-type and region-specific expression of >190 genes associated with 7 human retinal diseases. Our work provides a framework for comparative single-cell analysis across tissue regions and species.

INTRODUCTION

Most primates, including humans, see objects clearly only when they look straight at them, so their image falls on a small central region of the retina called the fovea (Figure 1A). This is because they look straight at them, so their image falls on a small central region of the retina called the fovea (Figure 1A). This is because...
To address these issues, we generated an atlas of >165,000 single-cell RNA sequencing (scRNA-seq) profiles from the fovea and peripheral retina of adult crab-eating macaques (Macaca fascicularis), a widely used primate model in vision studies (Figure S1B). We identified and molecularly characterized >60 cell types in each region, and validated many by them by pairing molecular markers with cell morphology. We then compared the fovea and periphery, showing that most types are shared by the two regions, but exhibit marked region-specific differences in proportions and expression programs. Next, we compared macaque and mouse retinal cell types. We found a tight correspondence between mouse and macaque PRs, BCs, and ACs, but a divergence in RGC types. Key macaque types and molecular features are also conserved in marmosets and humans. Finally, we used our atlas to determine the cell- and region-specific expression of >190 genes implicated in 7 complex diseases that cause human blindness, demonstrating striking patterns of region- and cell-type-specific expression. Overall, our study provides a general framework for using molecularly derived taxonomies of cell types to understand regional and species specializations in the nervous system and other organs.

RESULTS

Comprehensive Molecular Taxonomy of the Primate Retina Using scRNA-Seq
We generated cell atlases of foveal and peripheral regions of M. fascicularis retina using droplet-based scRNA-seq (Zheng et al., 2017) (STAR Methods), yielding high-quality cell profiles from 92,628 foveal and 73,053 peripheral cells (Table S1). For foveal samples, cells were dissociated from 0.5–1.5 mm diameter pieces and profiled without further processing. Because ∼80% of total cells in peripheral retina are rod PRs, we depleted rods (CD73+) or enriched RGCs (CD90+) from peripheral samples before profiling (Figure S1B and STAR Methods). In parallel, we assembled a retina-specific transcriptome, which substantially improved the mapping of scRNA-seq reads compared to existing references (Figures S1C–S1E), emphasizing the importance of high-quality tissue-specific transcriptome for scRNA-seq analyses.

To maximize our ability to distinguish cell types consistently, we first grouped cells into the six major retinal classes (RGCs, BCs, PRs, ACs, HCs, and non-neuronal cells) based on known class-specific gene signatures (Figures 1C and S1F and Table S1) and then iteratively clustered cells within each class separately, building on our earlier methods (Shekhar et al., 2016). Altogether, we distinguished 64 foveal (3 PR, 2 HC, 12 BC, 27 AC, 16 RGC, and 4 non-neuronal) and 71 peripheral (2 PR, 2 HC, 11 BC, 34 AC, 18 RGC, and 4 non-neuronal) clusters (Figures 1D–1I); all clusters were found in all animals (Figures S1G–S1I). As noted below, a few clusters contain >1 cell type. Non-neuronal cells were Müller glia, pericytes, endothelial cells, and microglia (Figure 1I). There are no oligodendrocytes in healthy retina, and astrocytes were not recovered in our samples. Using differential expression analysis, we identified molecular markers for each cluster and used this information to assign clusters to individual cell types. We first describe the types and then return to differences between fovea and periphery.

L and M Cones Are Distinguished Only by Expression of Opsin Paralogs
Retinas of trichromatic primates, including macaques and humans, contain rods plus three cone types that preferentially detect long (L; red), medium (M; green), and short (S; blue) wavelengths, because of their expression of L, M and S opsins (OPN1LW, OPN1MW, OPN1SW) respectively. S cones were readily distinguished, whereas M and L cones mapped to a single cluster (Figure 1D). OPN1MW and OPN1LW have ~98% identical coding sequences (Onishi et al., 2002) and are not distinguished in the macaque reference genome. We therefore retrieved exons that distinguish the two opsins from ~70% of the M/L cones and used them to evaluate M- and L-specific single-nucleotide polymorphisms (SNPs) (Figures S2A–S2C and S2E). Of these, >96% from both fovea and periphery exhibited exclusive L or M SNPs (Figure S2B, S2C, and S2E).

Remarkably, no genes other than OPN1MW or OPN1LW were differentially expressed (DE) between M and L cones (Figures 2A and S2D), supporting a model in which stochastic choice between the neighboring OPN1MW and OPN1LW genes diversifies otherwise identical cones (Wang et al., 1999). In contrast, many genes distinguished M/L from S cones and rods and S cones from rods (Figures 2B, 2C, and S2F).

Figure 1. Single-Cell Profiling of Peripheral and Foveal Cells from Macaque Retina
(A) (Top) Sketch of a primate eye showing position of fovea and macula. (Middle) Central region indicating diameters of the foveola (the foveal pit), fovea, and macula. (Bottom) Sketch of a section through macaque fovea, showing foveal pit (Foveola) and displacement of ganglion cell layer (GCL) and inner nuclear layer (INL) cells.
(B) Sketch of peripheral retina showing its major cell classes—photoreceptors (PRs), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs), retinal ganglion cells (RGCs) and Müller glia (MG), outer and inner plexiform (synaptic) layers (OPL and IPL), outer and inner nuclear layers (ONL and INL), and ganglion cell layer (GCL).
(C) Expression patterns of class-specific marker genes (rows; Table S1) in single foveal cells (columns). Cells are grouped by their class (color bar, top). Plot shows randomly selected 10% of total cells. These signatures were used to separate foveal and peripheral cells into classes.
(D–F) Visualization of foveal (top panel) and peripheral (bottom panel) PRs (D), HCs (E), BCs (F), ACs (G), RGCs (H), and non-neuronal cells (I) using t-distributed stochastic neighbor embedding (t-SNE), a 2D non-linear transformation of high-dimensional data that assigns proximal x-y coordinates to cells (points) with similar expression profiles. Individual cells are colored by their cluster assignments. Cluster labels, corresponding to post hoc assigned types, are indicated. Although substructure is visible in (D) and (I), this reflected batch effects, and we were unable to detect subtypes by reanalysis. Because of their low density in the peripheral retina, only three S cones were observed among the peripheral PRs, but these were not sufficient to form a separate cluster from M/L cones. Foveal (f) and peripheral (p) AC clusters are divided into GABAergic (Ga) and Glycinergic (Gl) groups and then numbered from largest to smallest cell number within each group. For RGCs, OFF and ON MGCs and PGCs are labeled; clusters 5+ numbered from largest to smallest in the fovea (f) and periphery (p), respectively. See also Figure S1 and Table S1.
Figure 2. Matching scRNA-Seq Clusters to Neuronal Types of the Primate Retina

(A) Comparison of average transcriptional profiles of foveal M cones and L cones. Each dot corresponds to a gene. No genes other than \textit{OPN1MW} and \textit{OPN1LW} differ significantly in expression levels (>1.2-fold at \(p < 0.01\), MAST test) between the two cone types.

(B) Dot plot showing expression of genes (rows) that distinguish PR types (columns) common to both the fovea and the periphery. The size of each circle is proportional to the percentage of cells expressing the marker (\(R_1\) UMI), and its intensity depicts the average transcript count within expressing cells.

(C) Validation of S-cone-specific gene \textit{CCDC136} (upper) and M/L-cone-specific gene \textit{THRB} (lower) by double and triple FISH with \textit{OPN1SW} (S opsin) and \textit{OPN1MW/LW} (M/L opsin) in the peripheral retina. Circle highlights an S cone.

(D) Gene expression patterns of type-enriched markers for selected BC types. Red box highlights a pan-BC, a pan-ON-BC, and a pan-OFF-BC marker. See Figure S2G and Table S2 for lists.

(E) Validation of new markers for two BC types in peripheral retina by FISH combined with immunostaining. (Top) DB6 (circle) cells, known to be CD15-positive, also express \textit{LHX3}. (Bottom) DB3a cell (circle) is \textit{CALB1+ ERBB4+}. IPL sublaminae (S1–S5) are demarcated by dashed lines. Sketches redrawn from (Tsukamoto and Omi, 2015, 2016).

(F) Expression patterns of genes selectively enriched among foveal ON and OFF MGCs and PGCs.

(G) Validation of markers for MGCs and PGCs from (F) combining FISH with viral labeling (GFP) to show RGC morphology in the fovea.

(legend continued on next page)
Molecular Classification and Validation of Interneuronal (BC, HC, AC) Types

BCs, the major excitatory interneurons of the retina, are divided into those that receive predominant input from cones or rods; cone BCs are further divided into those excited (ON BCs) or inhibited (OFF BCs) by light (Euler et al., 2014). 12 BC types (1 rod, 5 OFF cone, and 6 ON cone) have been previously reported in macaque peripheral retina based on morphology and immunohistochemistry (Grünewald et al., 1994; Tsukamoto and Omi, 2015, 2016).

We identified 12 foveal BC and 11 peripheral BC clusters; 10 mapped 1:1 to known types (Table S2), and supervised methods separated another cluster into two known types (Figure S2H). The additional foveal cluster appears to be a previously unreported OFF type, which we call OFF fraction (Figure S2I). We identified markers for each BC type and validated several of them (Figures 2D, 2E, S2G, and S2J–S2O).

HCs and ACs are the main sources of inhibitory input to retinal circuitry. We identified two clusters of HCs in both fovea and periphery (Figure 1E) and mapped them to distinct HC subsets in tissue. We also validated SPP1 (osteopontin) as a pan-HC marker (Figure S5D). We identified 27 foveal and 34 peripheral AC clusters, including both GABAergic and glycinergic subclasses (Figures 1G, S4A, and S5E and Table S2). We assigned six clusters to known mouse types based on their expression of orthologous markers (Figures S4A and S5E). Neuropeptides were expressed in subsets of GABAergic AC types (Table S2).

Markers for Midget and Parasol RGCs

Morphological studies have distinguished ~18 RGC types in primate retina (Dacey, 2004; Masri et al., 2019). ON and OFF Midget RGCs (MGCs)—the smallest and most abundant—comprise ~85% of foveal RGCs, larger ON and OFF parasol RGCs (PGCs) comprise ~10%, small bistratified RGCs (SBCs) account for ~5%, and ~11 types with larger dendritic arbors account for the remaining ~1%. MGCs and PGCs also account for a large majority of peripheral RGCs (Dacey, 2004).

We identified 18 peripheral and 16 foveal RGC clusters (Figure 1H). Based on their abundance, we tentatively identified a pair of clusters as ON and OFF MGCs (~85% of RGCs in fovea and 83% in periphery) and a second pair as ON and OFF PGCs (11% in fovea and 4.8% in periphery). Markers for these types include TBR1 (OFF MGC), TPBG (ON MGC), CHRNA2 (ON PGC), and C8B (OFF PGC). SPP1 and RBPMS2 are expressed by both PGC types and GUCY1A3 by both MGC types (Figures 2F and S3C–S3O). We confirmed the identities of these four RGC types by combining fluorescence in situ hybridization (FISH) with viral labeling to visualize morphology (Figures 2G, S3B, S3P, and S3Q). Interestingly, RGC somata expressing transcription factors (TFs) selective for ON and OFF MGCs and PGCs were segregated into outer and inner halves of GCL, suggesting a molecular basis for the laminar organization of physiologically distinct subclasses (Perry and Silveira, 1988) (Figures 2H and S3P). We were unable to further partition MGCs and PGCs by supervised methods.

Three peripheral RGC clusters expressed OPN4 (melanopsin), a marker of intrinsically photosensitive RGCs (ipRGCs). We identified markers for the remaining clusters, including SATB2 as a marker for SBCs (Figures 21 and S3A). To our knowledge, these are the first molecular markers for the major RGC types of the primate retina.

Most Peripheral and Foveal Retinal Cell Types Match 1:1

To relate foveal and peripheral clusters based on gene expression, we devised a multi-class learning framework that associated each foveal cell with a peripheral identity and then examined the extent to which clusters across the two regions corresponded (STAR Methods).

Most foveal clusters (77%) mapped 1:1 with peripheral clusters, including 10/12 BC, 2/2 HC, 20/27 AC, and 14/16 RGC clusters (Figures 3A–3D). These matches were statistically significant as quantified by the adjusted Rand index (ARI), a measure of similarity between data clusterings. Six foveal clusters (RGC clusters fg11,14 and AC clusters fg13,7,13 and fg8) could be partitioned because they each mapped to two closely related peripheral clusters. Most instances of multi-mapping were for AC clusters, likely due to a biased frequency distribution in the peripheral samples, which were not optimized for AC recovery (Figure S4B).

Quantifying the compositional similarity between the fovea and the periphery suggested that differences decrease from outer to inner retina. Values of the Jensen–Shannon divergence (JSD)—a distance measure in frequency space ranging from 0 (identical cell-type composition) to 1 (completely region specific) were: PRs (0.21), BCs (0.16), ACs (0.06), and RGCs (0.035) (STAR Methods). There were numerous differences in relative proportions for 1:1 matched types (Figures 3E–3H and S4B and Table S2), some consistent with previous reports (Grünewald and Martin, 1991; Wässle et al., 1994). Six RGC types were >4-fold enriched in foveal compared to peripheral samples (Figure 3G), six GABAergic AC types appeared to be periphery specific (Figure 3C), and the OFF gamma BC type appeared to be fovea specific (Figure S2J). Taken together, these results suggest that foveal and peripheral neuronal circuitry draw upon a similar, but not identical, “parts list” of cell types.

Programs for Phototransduction and GABAergic Neurotransmission Differ between Matching Types in the Fovea and Periphery

We next asked whether corresponding foveal and peripheral cell types exhibited DE genes (Figures 4 and S4). We found a median of 17 ± 8 genes significantly DE between corresponding types

(h) Somata of ON MGCs (TPBG+ and EOMES+) and OFF MGCs/PGCs (MEIS2+) are localized to the inner and outer halves (divided by dashed lines) of the ganglion cell layer, respectively, proximal to the fovea.
(i) SATB2-positive SBC labeled by GFP-expressing virus in the peripheral retina. Arrowheads indicate the axon (green) and soma (red). Bottom panels are rotations to show bistratified dendritic lamination.
Scale bar is 20 μm. DAPI staining is blue in (G), (E), and (G–I). See also Figures S2 and S3 and Table S2.
Figure 3. Correspondence between Foveal and Peripheral Clusters

(A–D) Transcriptional correspondence between foveal and peripheral clusters, summarized as “confusion matrices.” Circles and colors indicate the percentage of cells of a given foveal cluster (row) assigned to a corresponding peripheral cluster (column) by the classification algorithm trained exclusively on peripheral cells. (A) BCs. (B) RGCs. (C) ACs. (D) HCs. In (A), bars on the top and right border mark ON and OFF BC subgroups. In (C), bars mark GABAergic and glycinergic AC subsets; key known types are labeled in red, and types that might be periphery specific are highlighted by blue box in (C). Figure S4A provides molecular markers for AC clusters. In (A–D), the extent of 1:1 cluster matches are quantified by values of the ARI, which range from close to 0 (random) to 1 (perfect 1:1 match).

(legend continued on next page)
CYP26A1 in foveal MGs (Figures 4I–4K and S4D). These differ-
eral MGs, including expression of GABAergic components in shared cell types. GABAergic AC types from fovea (Figure 3C) and decreased
ience of inhibitory drive to foveal MGCs observed physiologically (Si-
ecules that deactivate the visual pigment (Doan et al., 2009). Light responses are slower in macaque foveal than peripheral cones (Sinha et al., 2017), and homozygous dele-
tion of Gngt1 accelerates rod responses in mice (Kolesnikov et al., 2011). Gngt1 is selectively expressed by rod PRs in mice and macaques (Figure 4B) but is also expressed at higher levels in foveal than peripheral cones, as verified by FISH and immunohistochemistry (Figure 4C; see below). It is thus tempting to speculate that the enrichment of Gngt1 in macaque cone
otes contribute to the kinetic differences—possibly by allowing transducin to compete more effectively with other mole-
cules that deactivate the visual pigment (Doan et al., 2009). Conversely, a cone-specific phototransduction component, GNB3, is also expressed at substantial levels by foveal rods (Figure 4B).

Another prominent difference is that several genes involved in GABAergic neurotransmission are expressed at higher levels in peripheral types in their foveal counterparts. They include the GABA_A receptor subunit GABBR2 in PRs (Figures 4B and 4C), the GABA synthetic enzyme GAD2 in rod BCs (Figure 4D) (Lassová et al., 2010), and several GABA receptor subunits in multiple RGC types (Figures 4F–4H and S4C). Thus, the paucity of inhibitory drive to foveal MGs observed physiologically (Sinha et al., 2017) may reflect both the absence of several GABAergic AC types from fovea (Figure 3C) and decreased expression of GABAergic components in shared cell types.

We also observed >100 DE genes between foveal and periph-
eral MGs, including SPP1 enriched in peripheral MGs and CYP26A1 in foveal MGs (Figures 4I–4K and S4D). These differ-
ences provide potential substrates for differences between their interactions with neurons in the two regions (Bringmann et al., 2018; Vecino et al., 2016).

Tight Molecular Correspondence between Macaque and Mouse BC and AC Types

While the conservation of genes across species has been exten-
sively studied, we know less about the extent to which cell types are conserved. scRNA-seq enables systematic comparison of cell atlases across species by leveraging gene orthology (Marioni and Arendt, 2017). To exploit this opportunity, we adapted the multi-class classification framework used for fovea-periphery comparisons to compare macaque cells with those previously collected from mice (Macosko et al., 2015; Shekhar et al., 2016).

As expected from the conserved retinal architecture, there was a 1:1 match between cell classes in the two species (Figure S5A). In addition, there was also a tight correspondence be-
tween mouse and macaque PR, HC, BC, and AC types. Mice are dichromats, with only M and S cone opsins, and many cones ex-
press both opsins (Euler et al., 2014). Mouse M and S cones
most closely resembled macaque M/L and S cones, respectively (Figures 5A and S5B). Mouse HC types were more transcriptionally similar to macaque H1, which they resemble morphologically, than to H2 (Wäsßle et al., 2000) (Figures 5B, SSC, and SSD and Table S2). For ACs, there was a striking correspondence between macaque and mouse based on comparison to our previously reported (but underpowered) estimate of 21 molecularly distinct mouse AC clusters (Macosko et al., 2015) (Figure 5C), with clear macaque equivalents of several well-studied mouse types (Figures 5D and S5E and Table S2). A more comprehen-
sive ongoing study has revealed >60 mouse AC types and increased the 1:1 matches with macaque (data not shown).

For BCs, nine peripheral macaque types mapped preferen-
tially to mouse types (Figure 5E; eight were 1:1), and expression patterns of type-enriched orthologs were conserved between the two species (Figure 5F). As noted below, we were unable to identify clear murine equivalents of the most abundant RGC types, MGCs, and PGCs. However, the BCs that selectively innervate MGCs (flat and invaginating midget bipolars [FMBs and IMBs]) correspond to mouse BC1 and 7, and the BCs that provide strongest innervation to PGCs (DB2, 3a, and 4) (Tsukamoto and Ormi, 2015, 2016) correspond 1:1 to mouse BC4, 3a, and 5a. It will be interesting to ask whether postsynaptic targets of these BC types share features with MGCs and PGCs.

Divergence in Expression Programs between Macaque and Mouse RGC Types

In contrast to BCs and ACs, mouse and monkey RGC types differ greatly in both number (>40 in mice; Baden et al., 2016; Bae et al., 2018; versus <20 in macaque) and distribution (no single mouse type accounts for >10% of all RGCs, whereas MGCs ac-
count for >80% of macaque RGCs). Moreover, using a recently published scRNA-seq atlas of early postnatal mouse RGCs (Rheaume et al., 2018), we found few clear matches between the species (ARI = 0.16), one being broadly conserved melanop-

In a similar fashion, mouse RGC types exhibit a similar lack of correspondence with adult mouse RGC types (data not shown). Although limited sampling might reduce our ability to detect conservation, we found no clear mouse equivalents of the abundant macaque

Empirical ARI values were highly significant for all classes, as compared to null ARI values (mean ± SD) from random associations.

- **BCs:** 10^{−5} ± 6 × 10^{−4}
- **RGCs:** 2 × 10^{−5} ± 6 × 10^{−4}
- **ACs:** 8.4 × 10^{−6} ± 3 × 10^{−6}
- **HCs:** 3 × 10^{−6} ± 2 × 10^{−6}

(E–H) Comparison of cell-type proportions between the fovea and the periphery (mean ± SD, computed across biological replicates). (E) PRs. (F) BCs. (G) RGCs. (H) HCs. Foveal type OFFx and DB1 are grouped together as “DB1” due to their transcriptional similarity. To facilitate direct comparison of RGCs, each foveal type is assigned a peripheral identity from (B). For ACs, see Figure S4A. Supervised analysis split fRGC11 and fRGC14 into two types each. RGC types un-
derrepresented in the fovea are marked ** in (G).

See also Figure S4.
Figure 4. Differences in Gene Expression between Foveal and Peripheral Cell Types

(A) Bar plot showing the number of DE genes per matched cluster between fovea and periphery (log-fold change > 2, p < 10^{-5}, MAST test). Bars are labeled based on the corresponding peripheral cluster (except known types), colored by cell class and arranged in decreasing order. Only clusters with ≥50 cells in both the fovea and periphery are shown.

(legend continued on next page)
is expressed by bistratified RGCs in both macaques (SBCs; Figure 2I) and mice (ON-OFF direction-selective ganglion cells [oDSCGs]; Peng et al., 2017). Moreover, patterns of TF co-expression were similar in both species (Figure S5F), suggesting a model wherein subfamilies of RGC types are specified by TF codes but with substantial divergence of the regulatory targets of those codes.

Conservation of Cell Types and Markers across Primates

A main value of studies in non-human primates is that their properties are likely to be shared with humans. To ask whether this is true of retina, we performed preliminary analyses on humans, as well as a second non-human primate, the common marmoset (Callithrix jacchus), which is increasingly used because of its small size and genetic accessibility (Mitchell et al., 2014).

We found strong conservation of key molecular and cellular features across macaque, human, and marmoset retinas. For example, markers of MGCs, PGCs, S cones, and HC types were conserved in marmoset (Figures 6A, S6A, and S6B), and the laminar segregation of foveal OFF and ON RGCs was apparent in both marmoset and human (Figures 6B and S6D). Distinctions between corresponding peripheral and foveal cell types were also conserved, such as the enrichment of GNGT1 in foveal cones (Figure S6C) and enrichment of CYP26A1 and SPP1 in foveal and peripheral MGs, respectively (Figures 6C, 6D, 7E, and S6E). Moreover, we profiled 2,983 BCs from human peripheral retina and found close correspondence (ARI = 0.74) between human and macaque types (Figures 6E, 6F, and S6F–S6H). Together with previous morphological studies (Chan et al., 2001; Haverkamp et al., 2003; Liao et al., 2016), these results reveal strong conservation of cell types among primates.

Cell-Type-Specific Expression of Human-Retinal-Disease Genes

Finally, encouraged by the correspondence between human and macaque cell types, we assessed the expression of genes that have been implicated in seven diseases associated with disabling vision loss: retinitis pigmentosa, cone-rod dystrophy, diabetic macular edema and retinopathy, congenital stationary night blindness, primary open-angle glaucoma, and age-related macular degeneration. We focused on ~200 genes for which association has been demonstrated by loss- or gain-of-function mutations or by genome-wide association studies (GWAS) (Farrar et al., 2017; Fritzsche et al., 2016; Graham et al., 2018; Wiggs and Pasquale, 2017; Zeitz et al., 2015).

For each gene, we calculated an enrichment score for each macaque foveal and peripheral cell class. Aggregating these scores by disease groups (Figure 7A) shows that, in general, expression was highest in cell classes primarily affected by the diseases: PRs for retinitis pigmentosa and rod-cone dystrophy, PRs and BCs for congenital stationary night blindness, RGCs for glaucoma, and non-neuronal cells for diabetic macular edema and retinopathy. As expected, many genes implicated in macular degeneration were expressed in PRs and non-neuronal cells, but several were also highly expressed in other cell classes, especially ACs, a class whose role in disease etiology and progression remains to be explored.

Patterns of expression for several genes are noteworthy. At least three genes associated with diabetic macular edema, which, as the name implies, selectively affects the macula, were expressed at higher levels in certain foveal non-neuronal types than their peripheral counterparts, such as PDGFB and EDN1 in endothelial cells (Figure 7C) (Graham et al., 2018). Likewise, the macular degeneration susceptibility gene VTN (Fritzsche et al., 2016) was enriched in foveal compared to peripheral rods and cones (Figure 7B). HTRA1, a major susceptibility gene for macular degeneration (Fritzsche et al., 2016), which has been implicated in dysfunction of retinal pigment epithelium, is also expressed at high levels in macaque HCs, but not in mouse HCs (Figure S7). Glioma-associated genes CYP1B1 and CYP26A1 were enriched in a GABAergic AC type and foveal MG, respectively (Figures 7B, 7E, and S7). Several other glioma-associated genes were enriched in specific RGC subsets: MAP3K1 by MGCs and PGCs, SIX6 by MGs, and GAS7 in multiple non-MGC and PGC types (Figure 7D). These region- and cell-type-selective expression patterns can inform future analyses of genetic variants associated with disease risk. Interestingly, expression patterns of many human-retinal-disease genes were not conserved in mice, highlighting the limitations of using a mouse atlas as a reference (Figure S7).

DISCUSSION

We used scRNA-seq to generate a cell atlas of the primate retina and used it as a foundation to address several questions about retinal structure and function. First, to explore regional differences within a tissue, we compared the cellular compositions...
Figure 5. Conservation of Retinal Cell Types between Mouse and Macaque

(A) Transcriptional correspondence between macaque (rows) and mouse cone types (from Macosko et al., 2015) (columns). Only mouse cones expressing M or S opsins, but not both, were used for this comparison.

(B) Supervised classification shows that HCs are more closely related to macaque H1 than to H2 cells.

(C) Transcriptional correspondence between macaque peripheral AC clusters and mouse AC clusters (from Macosko et al., 2015). 1:1 mapping of multiple macaque AC clusters reflects the incomplete resolution of AC types in published mouse data. Known types that map 1:1 are indicated (red).

(D) Example of orthologous gene expression patterns in matched macaque-mouse AC types.

(E) Transcriptional correspondence between macaque peripheral BC types and mouse BC types (from Shekhar et al., 2016). 9 out of 11 macaque BC types map preferentially to a single mouse type. Crossed red lines highlight correspondence of OFF and ON groups.

(F) Example of orthologous gene expression patterns in matched macaque-mouse BC types.

(legend continued on next page)
of macaque fovea and peripheral retina. Second, to assess evolutionary specializations across species, we compared macaques (which have a fovea) and mice (which do not) and also asked whether foveal specializations in macaque are conserved in two other primates, human and marmoset. Finally, we analyzed the expression of nearly 200 genes that have been associated with blinding diseases.

Figure 6. Conservation in Marmosets and Humans
(A) Biolistic labeling combined with FISH shows MEIS2+ OFF-MGs (top), EOMES+ ON-MGs (middle), and SPP1+ PGCs (bottom) in the marmoset fovea.
(B) The exclusive expression of MEIS2 and EOMES in the marmoset foveal GCL layer.
(C and D) CYP26A1 (C) and SPP1 (D) are selectively expressed by foveal and peripheral Müller glia, respectively, in marmoset retinas. Arrows indicate the center of the fovea.
(E) t-SNE visualization of human peripheral BCs. Representation as in Figures 1D–1I. Clusters are labeled based on their correspondence to macaque BC types (F).
(F) Transcriptional correspondence between human (rows) and macaque (columns) peripheral BC types. Representation as in Figure 3A. Each human BC cluster is labeled here and in (E), retroactively, based on its most similar macaque BC. Arrows indicate the center of fovea. Scale bars, 20µm and 300µm as indicated. DAPI staining is blue in (A–D).

Please cite this article in press as: Peng et al., Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina, Cell (2019), https://doi.org/10.1016/j.cell.2019.01.004
RGCs; they therefore transmit the vast majority of information from eye to brain. Yet, to date, there have been no means to identify them other than by laborious and low-throughput physiological or morphological methods. The availability of markers now enables a variety of studies on these indispensable cell types.

We also explored differences between L and M cones. These cell types transmit different spectral information, but the question of how they do so has been controversial. If M and L cones connect selectively to different postsynaptic cell types, as some studies suggest (Lee et al., 2012), one would expect them to express different recognition molecules,
implying transcriptional differences that extend beyond the opsin genes. If wiring is non-selective, as indicated by other studies (Wool et al., 2018), no non-opsin expression differences would be needed, implying that our ability to distinguish green from red is experience dependent rather than innate. Our results are consistent with the latter view. However, it is possible that subtle distinctions between L and M cones might have gone undetected, or critical differences might be restricted to early stages, when cones form connections (Hoshino et al., 2017).

Fovea and Periphery
The fovea mediates most high-acuity vision and much chromatic vision in primates. Indeed, one view of the peripheral retina is that at moderate to high light levels, its main job is to aid in directing eye movements to focus salient images on the fovea. Numerous physiological and morphological differences between fovea and periphery have been documented (see Introduction), but lack of molecular information has made it difficult to elucidate the extent to which differences stem from cell types unique to one region, from altered compositions across the same set of types, or from region-specific molecular programs within shared types.

Our results suggest that all three factors are involved, but to different extents. A few cell types are unique to or highly enriched in each region, and these may underlie certain functional differences between them. The OFFx bipolar is particularly interesting in this regard, and the absence of some foveal GABAergic AC types may contribute to the low level of foveal inhibition (Sinha et al., 2017). Nevertheless, our results suggest that the dramatic specializations of foveal circuitry and function arise mostly from regional differences in proportion and gene expression within shared types rather than from region-specific types. The differences in proportions (as measured by JSD) appear to be higher at the sensory and preprocessing layers (PRs and BCs) than for downstream processors and feature detectors (ACs and RGCs). Some of the differentially expressed genes, such as components of phototransduction and neurotransmitter pathways, may underlie documented differences in visual responses mediated by the fovea and periphery (Sinha et al., 2017).

Macaques and Mice
It has been clear for over a century that the major retinal cell classes are conserved across vertebrates (Cajal, 1893). Far less is known about the conservation of types within classes. It has been clear for over a century that the major retinal cell classes are conserved across vertebrates (Cajal, 1893). Far less is known about the conservation of types within classes. Conservation was stronger for types within outer retinal classes (PRs, BCs, and ACs) than for RGCs. Most notably, MGCs, the major RGC types in primates, lack clear counterparts in mice. Similarly, the molecular distinctions between the fovea and the periphery are higher for RGCs than for PRs and interneurons (Figure 4A). These patterns suggest that the outer retina may comprise a conserved set of information processors, with adaptation to species- and region-specific visual-processing requirements beginning at the level of RGCs and then continuing centrally.

This is not to say that macaque and mouse RGC types are unrelated. There may be an underlying shared gene regulatory program that specifies RGC diversity based on conserved patterns of type-specific TF expression and co-expression. These factors may specify groups that diversify differentially in the two species, raising the possibility that cross-species differences in homologous regions can be explained by rewiring of downstream programs specified by a conserved set of TFs.

In addition to the paucity of 1:1 matches, the number of RGC types is far lower in macaques than in mice. This difference may seem paradoxical, given the greater visual capabilities of primates. One possible explanation is that primates may rely less than mice on a broad array of retinal feature detectors (e.g., direction-selective RGCs) and more on complex processing in the cortex. Thus, primate RGCs, especially MGCs, may be designed to transmit a relatively unprocessed image with little loss of information to the cortex, where more sophisticated and flexible computations are performed. Presumably what is lost in speed is more than compensated by finesse.

Retinal Diseases
Many genes have been implicated in the pathogenesis of retinal diseases—some based on rare but highly penetrant mutations and others as common variants that confer susceptibility (Farrar et al., 2017; Fritsche et al., 2016; Graham et al., 2018; Wiggs and Pasquale, 2017; Zeitz et al., 2015). We assessed expression of nearly 200 such genes and found that many are selectively expressed in particular retinal cell classes, in particular types within classes, and in foveal or peripheral cohorts of particular types. For example, PDGFB and EDN1, implicated in diabetic macular edema (Graham et al., 2018), are expressed at significantly higher levels by foveal than peripheral endothelial cells, suggesting a basis for the increased susceptibility of the macula in this disease. Interestingly, several of the patterns we document in macaque are not conserved in mice, emphasizing the value of using primate models for investigating human retinal dysfunction. Together, these results provide both technical and conceptual foundations for investigations aiming to understand cellular mechanisms underlying blinding retinal diseases.

STAR METHODS
Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODELS AND SUBJECT DETAILS**
 - Tissue Procurement
- **METHOD DETAILS**
 - RNA-sequencing
 - Histological methods
 - Computational Methods
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
- **DATA AND SOFTWARE AVAILABILITY**

SUPPLEMENTAL INFORMATION
Supplemental Information includes seven figures, four tables, and one methods file and can be found with this article online at https://doi.org/10.1016/j. cell.2019.01.004.
ACKNOWLEDGMENTS

We thank R. Born, A. Liu, F. Rieke, and J. Wiggs for advice; D. Juric for human tissue, and L. Gaffney, A. Hupalowska, and E. Martersteck for assistance. This work was supported by grants from HHMI, the Klarman Cell Observatory, the NIH (MH105960, EY025840, EY028633, EY025555, and EY028625), and the BrightFocus Foundation (M2014055).

AUTHOR CONTRIBUTIONS

Y.-R.P., K.S., A.R., and J.R.S conceived the study and wrote the manuscript with input from all authors. K.S., W.Y., and A.S. performed bioinformatic analysis with guidance from A.R. Y.-R.P. and D.H. performed molecular and histological experiments with guidance from M.T.H.D. and J.R.S. T.v.Z. and G.S.B. procured and prepared tissue and developed methods. M.T.H.D. provided guidance on study design and analysis.

COMPETING INTERESTS

A.R. is a cofounder and an equity holder in Celsius Therapeutics and an SAB member in Syros Pharmaceuticals and Thermo Fisher Scientific.

Received: September 26, 2018
Revised: November 8, 2018
Accepted: December 31, 2018
Published: January 31, 2019

REFERENCES

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken polyclonal anti-GFP</td>
<td>Abcam</td>
<td>CAT#ab13970; RRID: AB_300798</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-GFP</td>
<td>Millipore</td>
<td>Millipore Cat# AB3080P, RRID: AB_2630379</td>
</tr>
<tr>
<td>Mouse polyclonal anti-Satb2</td>
<td>Abcam</td>
<td>Cat# ab51502; RRID: AB_882455</td>
</tr>
<tr>
<td>Goat polyclonal anti-Choline Acetyltransferase</td>
<td>Millipore</td>
<td>CAT#AB144P; RRID: AB_11214092</td>
</tr>
<tr>
<td>Goat polyclonal anti-Vesicular Acetylcholine Transporter</td>
<td>Millipore</td>
<td>CAT#ABN100; RRID: AB_2630394</td>
</tr>
<tr>
<td>Guinea polyclonal anti-Rbpms</td>
<td>PhosphoSolutions</td>
<td>CAT# 1832-RBPMS; RRID: AB_2492226</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Rbpms</td>
<td>Abcam</td>
<td>CAT# 194213; RRID: AB_648803</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Calbindin</td>
<td>Swant</td>
<td>CAT# CB38a</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Calretinin</td>
<td>Millipore</td>
<td>CAT# MAB1568; RRID: AB_94259</td>
</tr>
<tr>
<td>Goat polyclonal anti-osteopontin (SPP1)</td>
<td>R&D Systems</td>
<td>Cat# AF808; RRID: AB_2194992</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-RPKCa</td>
<td>Sigma</td>
<td>CAT# P4334; RRID: AB_477345</td>
</tr>
<tr>
<td>Mouse monoclonal anti-PKCa</td>
<td>Abcam</td>
<td>CAT# ab31; RRID: AB_303507</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Secretagogin</td>
<td>BioVendor</td>
<td>CAT# RD181120100; RRID: AB_10720931</td>
</tr>
<tr>
<td>Mouse anti-Human CD15</td>
<td>BD Biosciences</td>
<td>CAT# 559045; RRID: AB_397181</td>
</tr>
<tr>
<td>anti-human monoclonal CD90 microbeads</td>
<td>MACS Miltenyi Biotec</td>
<td>CAT# 130-096-253</td>
</tr>
<tr>
<td>anti-mouse IgG1 microbeads</td>
<td>MACS Miltenyi Biotec</td>
<td>CAT# 130-047-102; RRID: AB_244355</td>
</tr>
<tr>
<td>Mouse anti-Human CD73 Clone AD2</td>
<td>BD Biosciences</td>
<td>CAT# 550256; RRID: AB_393560</td>
</tr>
</tbody>
</table>

Chemicals, Peptides, and Recombinant Proteins		
AMES’ Medium	Sigma	CAT# A1420
Papain	Worthington	CAT# LS003126
Ovomucoid	Worthington	CAT#LS003087
Large cell column	MACS Miltenyi Biotec	CAT# 130042202
AzuraQuant cDNA synthesis kit	Azura	CAT# AZ-1995:
Recombinant Human BDNF	PeproTech	CAT# AF-450-02
Recombinant Human CNTF	PeproTech	CAT# AF-450-13

Critical Commercial Assays		
Chromium Single Cell 3’ Library & Gel Bead Kit v2, 16 rxns	10X Genomics	CAT# 120237
Chromium Single Cell A Chip Kit, 16 rxns	10X Genomics	CAT# 1000009
Chromium i7 Multiplex Kit 96 rxns	10X Genomics	CAT# 120262

Deposited Data		
Raw data files for scRNA-seq of macaque retinal cells	This study	GEO:GSE118480
Raw data files for Tru-Seq RNA-sequencing	This study	SRA: PRJNA514024
Raw data files for scRNA-seq of human retinal cells	This study	DUOS-000105

| Recombinant DNA | | |
| AAVrg-CAG-GFP(Addgene) (titer: 1e12) | Addgene | CAT#37825 |

Software and Algorithms		
StringTie v1.3.3	https://ccb.jhu.edu/software/stringtie/	
Hisat2	https://ccb.jhu.edu/software/hisat2/index.shtml	

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Joshua R. Sanes (sanesj@mcb.harvard.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Tissue Procurement
Non-human primate and human retinas were obtained and used in accordance with the guidelines for the care and use of animals and human subjects at Harvard University and Boston Children’s Hospital, and supplying institutions. All the procedures on non-human primates were approved by the Institutional Animal Care and Use Committees. Acquisition and use of human tissue was approved by the Human Study Subject Committees (DFCI Protocol Number: 13-416 and MEE - NHSR Protocol Number 18-034H).

Eyes from male macaques (Macaca fascicularis, 3-9 years of age) were kindly provided by institutions including BioMerie and Massachusetts General Hospital. Eyes were collected either pre-mortem under deep anesthesia or %45 min post-mortem. In some cases, whole globes were immediately placed in ice-cold Ames solution (Sigma-Aldrich; equilibrated with 95% O2/5% CO2 for all use), where they were stored before experimentation. In others, a rapid hemisection was performed to remove the vitreous and the anterior chamber, and the posterior eyecup was immersed in room-temperature Ames. Retinas were then dissected free and stored in ice-cold Ames solution. Experiments commenced within 8 hours. For access to the macaque samples used in this study, we thank V. Belov, C. Cetrulo, D. Guberski, A. Hall, P. Kovalenko, A. LaRochelle, J. Madsen, M. Nedelman, M. Papisov, and S. Smith.

Eyes from male and female common marmosets (Callithrix jacchus, 2-10 years of age) were generously provided by the McGovern Institute for Brain Research (Massachusetts Institute of Technology). Animals were perfused with 4% paraformaldehyde (PFA) under deep anesthesia. Eyes were then collected, post-fixed for 1hr in 4% PFA, and stored in ice-cold Ames solution. We are grateful to G. Feng, Q. Zhang and C. Wu for access to this tissue.

Macaque and marmoset eyes were collected from animals that had reached the end of unrelated studies at supplying institutions. No ocular or visual abnormalities were noted. Data presented in this manuscript did not covary with any treatment that had been applied to the animals.

The human eye used for sequencing and in situ hybridization was collected ~6 hours postmortem from a 74 year-old male. The whole globe was immediately transported back to the lab in a humid chamber. Hemisection was performed to remove the anterior chamber and the posterior pole was recovered in Ames equilibrated with 95% O2/5% CO2 before further dissection and dissociation. The donor was confirmed to have no history or clinical evidence of ocular disease or intraocular surgery. We are grateful to Dr. Juric and the Rapid Autopsy Program, Susan Eid Tumor Heterogeneity Initiative, Massachusetts General Hospital for expeditious access to this material, enabling recovery of high quality RNA for sequencing.

Other human eyes used for in situ hybridization were provided by the Lions VisionGift (Portland, OR) and the National Disease Research Interchange (NDRI; Philadelphia, PA). They were collected < 1hr postmortem from a 28 year-old male and a 69 year-old female, hemisected, and fixed overnight in ice-cold 4% PFA following removal of the cornea. No ocular disease was reported in these donors.

METHOD DETAILS

RNA-sequencing

Single Cell Isolation
0.5-1.5 mm diameter foveal tissues centering on the foveal pit were dissected out from four macaque eyes. Foveal samples were digested with 200 units papain (Worthington, LS003126). Foveae M1 and M2 were digested at 37°C; foveae M3 and M4 were...
digested at 22°C. Following digestion, retinas were dissociated and triturated into single cell suspensions with 0.04% bovine serum albumin (BSA) in Ames solution. Peripheral retinal pieces were dissected and pooled from all quadrants of the retina. Single cell suspensions were dissociated at 37°C as described for fovea. Dissociated cells were incubated with CD90 microbeads (Miltenyi Biotec, 130-096-252; 1 μl per 10⁷ cells) to enrich RGCs or with anti-CD73 (BD Biosciences, clone AD2; 5 μl per 10⁷ cells) followed by anti-mouse IgG1 microbeads (Miltenyi Biotec, 130-047-102; 10 μl per 10⁷ cells) to deplete rods. Incubations were at room temperature for 10 min. CD90 positive cells or CD73 negative cells were selected via large cell columns through a MiniMACS Separator (Miltenyi Biotec). Single cell suspensions were diluted at a concentration of 500-1800 cells/μL in 0.04% BSA/Ames for loading into 10X Chromium Single Cell A Chips. Human cells were dissociated and treated with anti-CD73 as above. **Droplet-Based scRNA-seq** Single cell libraries were prepared using the Chromium 3’ v2 platform (10X Genomics, Pleasanton, CA) following the manufacturer’s protocol. Briefly, single cells were partitioned into Gel beads in EMulsion (GEMs) in the GemCode instrument followed by cell lysis and barcoded reverse transcription of RNA, amplification, shearing and 5’ adaptor and sample index attachment. On average, approximately 10,000 single cells were loaded on each channel and approximately 6,000 cells were recovered. Libraries were sequenced on the Illumina HiSeq 2500 (Paired end reads: Read 1, 26bp; Read 2, 98bp). **Histological methods** **Viral Transduction** Macaque or marmoset retinas were divided into four quadrants according to cardinal axes with the macula in the temporal region and mounted on Millicell culture inserts (Millipore) with the ganglion cell layer facing up. Retinas were infected with 5 μl of AAV retrograde virus encoding GFP directed by the CAG promoter (Addgene) with a titer ~10e12. Methods were adapted from (Johnson and Martin, 2008; Meyer-Franke et al., 1995). Transduced retinas were cultured in Neurobasal A medium (Fisher 10888-022) supplemented with 100 units/mL penicillin and 0.1 mg/mL streptomycin (Sigma P433), 1 mM L-glutamine (Sigma G7513), B27 (Fisher 17504-044), 0.005 mM forskolin (Sigma F6886), 1 mM sodium pyruvate (Fisher 11360-070), 25 ng/mL BDNF (PeproTech 450-02), and 10 ng/mL CNTF (PeproTech 450-13) for four days. Retinas were then fixed in 4% PFA in phosphate-buffered saline (PBS) for 1 hr at 4°C and separated from the culture insert after fixation. **Biolistic Transfection** The biolistics procedure was adapted from a published protocol (Masri et al., 2019). Briefly, gold particles (1.6 μm diameter; 12.5 μg; Bio-Rad) were coated with pCMV-GFP DNA plasmid (25 μg). The particles were delivered to retinal cells in whole-mount retinas with GCL facing up using a Helios gene gun (Bio-Rad). The retinal explants were cultured for 3 days followed by fixation as described for virus transduced retinas. **Fluorescent In Situ Hybridization (FISH)** Eyes were fixed in 4% PFA. Marmoset and human eyes were fixed by perfusion and immersion respectively as described under “Tissue Procurement.” For macaque eyes, silts or windows were made in the cornea of eyes collected post-mortem, and the globe was immersion-fixed overnight in ice-cold 4% PFA. Antisense probes were generated by PCR using a reverse primer with a T7 sequence adaptor to permit in vitro transcription (see Table S4 for primer sequences). DIG rUTP (Roche, 11277073910), DNP rUTP (Perkin Elmer, NEL555001EA), and Fluorescein Bio-Rad were coated with pCMV-GFP DNA plasmid (25 μg). The biolistics procedure was adapted from a published protocol (Masri et al., 2019). Briefly, gold particles (1.6 μm diameter; 12.5 μg; Bio-Rad) were coated with pCMV-GFP DNA plasmid (25 μg). The particles were delivered to retinal cells in whole-mount retinas with GCL facing up using a Helios gene gun (Bio-Rad). The retinal explants were cultured for 3 days followed by fixation as described for virus transduced retinas.
Images were acquired on Zeiss LSM 710 confocal microscopes with 405, 488-515, 568, and 647 lasers, processed using Zeiss ZEN software suites, and analyzed using ImageJ (NIH). Images were acquired with 16X, 40X or 63X oil lens at the resolution of 1024x1024 pixels, a step size of 0.5-1.5μm, and 90μm pinhole size. ImageJ (NIH) software was used to generate maximum intensity projections and neuronal dendrites were reconstructed with ImageJ plugin simple neurite tracer. Adobe Photoshop CC was used for adjustments to brightness and contrast.

Image Acquisition, Processing and Analysis

- **Computational Methods**

 Assembling a Retina-specific Transcriptome for M. fascicularis

 We obtained high quality total RNA from macaque retinal tissue (RNA Integrity Number (RIN) score 9.8), and prepared strand-specific libraries using the TruSeq strand-specific Total RNA kit (Illumina Inc.), which was sequenced on the NextSeq 500 system to obtain 45 million 100 bp paired end reads. We used StringTie (v1.3.3) (Pertea et al., 2016) to assemble a genome-guided transcriptome, using an available NCBI transcriptome for M. fascicularis (annotation release 101; https://ncbi.nlm.nih.gov/genome/776) as an initial guide. Briefly, we mapped RNA-seq reads onto the existing transcriptome in a strand-specific manner using the Hisat2 software (with command line options--dta--rna-strandedness RF), following published guidelines (Pertea et al., 2016). Next, we used StringTie (with command line option--rf) to assemble a new transcriptome based on TruSeq reads. We then reran StringTie (with the command line option merge) to obtain an updated transcriptome annotation, which contained modifications of transcript body definitions from the existing NCBI reference as well as novel transcripts supported by the TruSeq reads. While the modified transcripts retained gene names from the original annotation, the novel transcripts were initially named according to Stringtie’s naming convention (e.g., MSTRG.5141). We call this the NCBI + TruSeq reference in Figure S1C. There were a few instances where sense and antisense transcripts were predicted for some genes; in these cases we added suffixes “.p” and “.n” against the corresponding gene name to indicate this fact (e.g., FEZF1_p and FEZF1_n).

 To facilitate transcriptional mapping of macaque types to mouse and human types, we used BLAT (Kent, 2002) to associate each macaque transcript with its closest ortholog (reciprocal best matches) in the NCBI mouse (version GRCm38) and human (version GRCh37) transcriptomes, respectively. Encouragingly, this automated procedure matched transcript gene names with similar letter codes (e.g., macaque *TRPM1* with mouse *Trpm1* and human *TRPM1*). We use this mapping to associate each reconstructed transcript with the closest human gene by sequence, in cases where such homology was strong. In some cases, we also found that certain tenuously named loci in the NCBI reference could be associated with homologous mouse and human gene names (e.g., macaque LOC101864869 could be associated with mouse *Rps27a*, LOC102132859 could be associated with mouse *Cyp26a1* etc). For many loci, however, we were unable to associate a human gene and for these cases, we retained the naming convention assigned by StringTie (e.g., MSTRG.5141).

 Pre-Processing Of 3’ Droplet-based scRNA-Seq Data

 Sample demultiplexing, alignment to the NCBI-TruSeq reference, quantification and initial quality control (QC) was performed using the Cell Ranger software (version 2.1.0, 10X Genomics) for each sample (i.e., 10X channel) separately. We used the option “–force-cells 6000” in Cell Ranger count to obtain a 36,162 genes x 6,000 cells count matrix each sample to deliberately extract a larger number of cell barcodes in the data, as we found that the automatic estimate of Cell Ranger was too conservative, and was unfavorable for small cell-classes like BCs. Here, 6,000 represented a “loose” upper bound on the number of cells that could be recovered given the density of each the cell suspension loaded onto every channel per the manufacturer’s estimates. We grouped the count matrices separately for the foveal and the peripheral samples to generate a consolidated matrix for each region. Only cells which expressed > 500 genes were retained for further analysis. Further pruning of cells (low quality cells, doublets) was done for each class separately (see below). Library size, as quantified by the number of genes detected per cell on average, was highly cell-class dependent. Values by class, from highest to lowest, were: RGCs, 4000 genes/cell; ACs, 1500 genes/cell; cones, 1400 genes/cell; non-neuronal cells, 1200 genes/cell; HCs, 1000 genes/cell; rods, 900 genes/cell; and BCs, 750 genes/cell.

 Separation of Major Cell Classes

 Both the foveal and the peripheral datasets consisted of multiple biological replicates (Figures S1G–S11). Moreover, depending on the enrichment method, each sample contained widely different distributions of the main cell classes. For example, the foveal samples typically comprised of ~30% RGCs, ~28% BCs, ~8% ACs (Figure S1H), the peripheral CD90+ samples contained ~28% RGCs, 0% BCs, ~50% ACs, and the peripheral CD73- samples contained < 1% RGCs, ~30% BCs and ~10% ACs (Figure S1I). Moreover, we anticipated that the differences in proportions also extends to types within a class (Figure 3), and that foveal and peripheral types likely had molecular differences (Figure 4). This made conventional batch correction using methods such as Surrogate Variable Analysis and ComBat difficult, because they make strict distributional assumptions that are violated here. Furthermore, covariates that can be used to counteract these assumptions are not known a priori. We also attempted to perform global batch correction using recently published methods that use Canonical Correlation Analysis (CCA; (Butler et al., 2018)) or Mutual Nearest Neighbor (MNN; (Haghverdi et al., 2018)) matching, but in many cases these did not completely remove batch effects, collapsed distinct types with known molecular markers, or appeared to have varying impact on different cell classes.

 To make batch correction more tractable and to avoid extensive biases in the initial stages for the reasons stated above, we first analyzed the foveal and the peripheral datasets separately to stratify the cells by their class. We followed our earlier PCA + Louvain-Jaccard graph-clustering pipeline (Shekhar et al., 2016) without batch correction to obtain a set of transcriptionally distinct clusters.
At this stage, we deliberately set parameters to “overcluster” the data to avoid combining distinct cell classes. Next, we scored each cell for gene signatures of well-known retinal cell classes - Rods, Cones, Bipolar Cells (BC), Horizontal Cells (HC), Amacrine Cells (AC), Retinal Ganglion Cells (RGC), and non-neuronal cells such as Müller Glia (MG) and others (Table S1). Classes with shared markers often scored similarly, but with one higher than the other (e.g., TFAP2A/2B and ONECUT1/2 are expressed in ACs and HCs, with TFAP2A/2B being higher in the former and ONECUT1/2 being higher in the latter). In such cases, we combined these classes and analyzed them as a group in downstream pipelines. Thus, we separated the foveal and peripheral datasets into 5 groups comprising - (i) Rods and Cones, (ii) Amacrine Cells (ACs) and Horizontal Cells (HCs), (iii) Bipolar Cells (BCs), (iv) Retinal Ganglion Cells (RGCs), and (v) Others consisting predominantly of Müller Glia, but also pericytes, endothelial cells and microglia (Figure 1C). Astrocytes are absent from the fovea and are largely confined to the optic fiber layer in the periphery (Vecino et al., 2016). None were recovered from either region in our samples. Encouragingly, cells of the same class were more highly correlated with each other than cells of other classes, supporting this separation (Figure S1F).

Although clusters at this stage exhibited batch effects, ~90% of clusters could be unequivocally assigned to a class. The other clusters comprised low quality cells and “doubllets.” These were often characterized by overall low gene count that was tightly distributed around the minimum cutoff value (~500-700 genes/cell), the mixed expression of more than one class-specific scores albeit at lower levels than “pure” clusters, and the absence of expression of non-class markers that were specific. Moreover, these cells typically clustered proximally on the dendrogram or tSNE visualization to another large, bonafide cluster, as observed previously (Shekhar et al., 2016). To avoid discarding cells erroneously, we analyzed these clusters separately (not shown), and confirmed that they were doubllets and low-quality cells. Because the excluded cells were heavily biased toward low gene-count cells, we could have excluded them ab initio by setting a more stringent threshold, but this would have risked excluding genuinely small, but intact single-cell libraries.

Dimensionality Reduction, Clustering and Visualization For Each Foveal and Peripheral Group

Following the initial clustering step, we analyzed the 6 major classes of cells - RGCs, BCs, ACs, HCs, PRs, and non-neuronal cells for fovea and periphery separately (Figures 1D–1I). HCs and ACs were separated for this analysis. We employed the following computational steps to cluster each of these groups as described below.

1. **Normalization:** Expression values E_{ij} for gene i in cell j were calculated following (Shekhar et al., 2016). Briefly, the Cell Ranger reported UMI (i.e., transcript) count value for each gene i in each cell j was divided by the sum of the total UMI counts in cell j to normalize for differences in library size, and then multiplied by M, the median UMI counts for all cells within the group, resulting in Transcripts-per-median (TPM_{ij}). E_{ij} was then calculated as $\log(TPM_{ij} + 1)$.

2. **Identification of highly variable genes (HVGs):** We first calculated the mean (μ) and coefficient of variation (CV) of transcript counts for each gene in the data. We then computed for each gene, the “excess CV” (or eCV) by subtracting the observed CV from a null model of CV versus μ. This null model is based on a Poisson-Gamma mixture, which was shown to accurately model the null CV versus μ relationships for data containing UMIs for a wide range of 3′-biased protocols (Pandey et al., 2018). We calculated the mean and standard deviation (SD) of the eCV values, and selected genes (HVGs) that had eCV > mean + 0.7*SD This typically selected 700-2500 HVGs for each group.

3. **Batch correction:** We restricted the expression matrix E_{ij} to HVGs and used a linear regression model (adapted from the source code of the ‘RegressOut’ function of the R package ‘Seurat’) to remove correlations of expression values associated with three covariates – the animal of origin (Figure S1G), the total number of genes observed per cell, and the expression strength of ribosomal genes within each cell. The choice of covariates was guided by running initial tests on PRs, BCs and RGCs where some prior knowledge of the underlying types exists. We tested different combinations of covariates, and settled on a combination that led to the alignment of known types across replicates (e.g., cones or IMBs), and used this scheme consistently for all cell group analyses. Here, we also tested the CCA-based (Butler et al., 2018) and MNN-based (Haghverdi et al., 2018) batch correction strategies, but found that the performance of these methods depended on the choice of certain tunable parameters, which were different for different groups. The linear regression model, on the other hand, did not contain additional parameters outside of the choice of covariates, and was computationally much faster than the other two methods. In a few cases, some residual batch effects still remained, which we corrected for in a supervised manner (see below). For BCs and RGCs, two groups extensively validated in this study, we additionally confirmed the absence of any artifacts by re-clustering single batches separately and verifying that all the abundant clusters were preserved. We refer to the corrected expression matrix as \hat{E}. For each of the HVGs, we compute the Pearson correlation coefficient between the values in E and those in \hat{E}. Encouragingly, most genes had a similar correlation coefficient ($r > 0.97$), but \sim30 genes had a significant reduction in correlation ($r < 0.6$). We flagged these “batch specific genes” in our differential-expression analysis of clusters in 5 (see below).

4. **Principal component analysis and 2D visualization:** We restricted the corrected expression matrix \hat{E} to HVGs, and values were centered and scaled before input to Principal Component Analysis (PCA), which was implemented using the R package `irlba`. Statistically significant PCs were estimated using the Tracy-Widom distribution (Shekhar et al., 2016), which we found to be an excellent approximation to exact values computed using the more exact, but computationally intensive, bootstrap permutation
k = 30 was used for all groups, except peripheral HCs where k = 15 was used

The transcript sequences of

1986; Onishi et al., 2002). In the crab-eating macaque, there are only 26 single nucleotide polymorphism (SNPs) over 1,095 nucle-

cells were consistent with previous studies (Onishi et al., 2002). For each M/L cone cell, we then counted the

to this locus, but not the S-opsin

SNPs could not be distinguished from sequencing errors. Thus, cells in the foveal cone cluster that expressed transcripts aligning

This made it difficult to unambiguously assign a short read (98bp) aligning to this locus to either

OPN1MW-

markers are well-defined (Table S1

R function ‘p.adjust’.

differential expression (DE) tests for a gene between a pair of clusters or between a cluster and the remaining clusters were per-

Differential expression (DE) tests for a gene between a pair of clusters or between a cluster and the remaining clusters were per-

6) markers in increasing order of the proportion of background cells where they

We sought markers for a cluster by comparing it to other clusters only within the same class for DE genes, since class specific markers were well-defined (Table S1, Figures 1C). To obtain highly specific markers for histological validation, we ranked significantly enriched (> 1.5-fold difference, FDR adjusted p < 10^{-4}) markers in increasing order of the proportion of background cells where they

Distinguishing M versus L Cones

The transcript sequences of OPN1MW and OPN1LW are extremely similar across Old World Monkeys and humans (Nathans et al., 1986; Onishi et al., 2002). In the crab-eating macaque, there are only 26 single nucleotide polymorphism (SNPs) over 1,095 nucle-

This made it difficult to unambiguously assign a short read (98bp) aligning to this locus to either

began with negligible levels of markers of other cell- classes.

While such clusters appeared more BC-like in the initial

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-

cluster after an initial segregation, we noted that the data was not entirely free of contaminants. For example, we found small

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-

cell-class expressed at most negligible levels of markers of other cell- classes.

7. Removing doublets and contaminants: Although dimensionality reduction and clustering were performed separately for each

class after an initial segregation, we noted that the data was not entirely free of contaminants. For example, we found small

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-

cluster after an initial segregation, we noted that the data was not entirely free of contaminants. For example, we found small

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-

cluster after an initial segregation, we noted that the data was not entirely free of contaminants. For example, we found small

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-

cluster after an initial segregation, we noted that the data was not entirely free of contaminants. For example, we found small

PR-like or AC-like clusters when analyzing BCs in the fovea or periphery. These were likely doublets as these clusters also ex-
were detected (Table S3). Differential gene expression patterns were visualized either in dotplots (e.g., Figure 2B) or box-and-whisker plots (e.g., Figure 4B).

To identify fovea or periphery specific DE genes for cell types that had 1:1 matches across the two regions, we collected the corresponding cells from each region and applied MAST as before, while controlling for library size differences. In choosing candidates to pursue for validation, we also avoided weakly enriched genes that could be explained by large differences in abundance of a different cell class in the same region. For example, RHO and GNAT1 were weakly enriched in peripheral RGCs, BCs and ACs, which likely reflects contamination from the predominant rods in the periphery.

Transcriptional Mapping of Foveal Types to Peripheral Types within a Class

We compared the consistency between foveal and peripheral clusters for HCs, BCs, ACs and RGCs within each cell class using a multi-class classification approach, as described before (Shekhar et al., 2016). For PRs and non-neuronal cells, the fovea versus periphery mapping was straightforward as the types could be easily identified based on known markers, and their transcriptional identities could be matched between the two regions.

For BCs, RGCs, ACs and HCs, we trained a multi-class classifier using Random Forests (RF) as well as the recently published Xgboost algorithm, which uses gradient boosted trees (Chen and Guestrin, 2016) using the R packages ‘randomForest’ and ‘xgboost’, respectively. In each case, we trained the classifier on the peripheral cluster labels, using as features the common HVGs identified in the foveal and peripheral datasets as above (cluster-specific markers were not favored in any way). The training was performed on 50% of the cells in peripheral datasets and its performance was tested on the remaining, “held-out” dataset. (The foveal data was not used for training.) For each of the 4 classes (HCs, BCs, ACs and RGCs), the maximum error rate for types in the held-out data was < 1% (not shown), suggesting that the type-specific transcriptional signatures were robust, learnable, and not prone to overfitting.

The trained classifier was then used to assign each foveal cell a peripheral identity, in a manner that was agnostic to its foveal cluster identity. For each cell, we computed the “margin,” i.e the fraction of decision trees that vote for the “winner” type (majority vote). We excluded cells which fell into the following criterion,

\[
\text{margin(cell)} < \min \left(0.6, \frac{5}{\# \text{of types}} \right)
\]

This was done to buffer against potential misclassifications due to a marginal majority. For all of the cell classes tested, < 4% of cells were excluded due to this criterion. The congruences of the foveal cluster identities and their peripheral matches were visualized as confusion matrices for each class (Figures 3A–3D). A mapping between a foveal cluster \(F\) and a peripheral cluster \(P\) was considered 1:1 if > 85% of cells from \(F\) mapped to \(P\), and if < 5% of cells from every other peripheral cluster mapped to \(F\). Results from Xgboost and RF were extremely comparable, although the former was much more computationally efficient. The confusion matrices (Figures 3A–3D) shown are equally-weighted aggregated results of Xgboost and RF.

To quantify the extent of 1:1 mapping between foveal and peripheral clusters we computed the Adjusted Rand Index (ARI), a measure of the similarity between two data clusterings, between the foveal cluster labels and the Xgboost/RF–assigned cluster labels using the R package “mclust.” The significance of the computed ARI values were evaluated by comparing against “null” ARI values computed by randomly permuting the cluster labels across cells. Mean and standard-deviation of null ARI values were computed by averaging 10,000 trials.

Comparison of Cluster Frequencies between the Fovea and the Periphery

We computed frequency differences of 1:1 matched types between the fovea and the periphery, and assessed their significance using a two sample t test. For foveal types that were a mixture of multiple peripheral types (e.g., fRGC11), we assigned each foveal cell its matched peripheral cluster identity prior to comparison (see previous section). A fovea versus periphery frequency comparison could not be meaningfully done for ACs, as CD90 non-uniformly labels ACs. We believe that this phenomenon likely explains the poor correlation between foveal and peripheral AC type frequencies \((r = 0.12)\); we could therefore not make a fair comparison of AC types between the regions. Interestingly, although the CD73- samples contributed only ~10% of all peripheral ACs, the AC type frequencies in these samples correlated much better with the foveal population \((r = 0.79)\); Figure S4B), and suggested that a few peripheral types (e.g., VIP+ ACs) were conspicuously underrepresented in the foveal samples (Figure 3C).

We quantified the compositional similarity between foveal and peripheral clusterings for each cell class by computing the Jensen-Shannon divergence (JSD), as follows. Let \(P = \{p_1, p_2, \ldots, p_n\}\) and \(Q = \{q_1, q_2, \ldots, q_n\}\) be the peripheral and foveal frequencies of \(n\) clusters of a cell class \(C\), each of which sums to unity. Here \(n\) is the total number of clusters which is a sum of the 1:1 matched clusters, and the clusters unique to either region. Then the JSD between the fovea and the periphery for cell class \(C\) is computed as,

\[
\text{JSD}(P \mid Q) = \frac{1}{2} D(P \mid M) + \frac{1}{2} D(Q \mid M)
\]

Here, \(M = \frac{1}{2}(P + Q)\), and \(D(P \mid Q)\) is the Kullback-Leibler (KL) divergence between probability distributions \(P\) and \(Q\) as follows,

\[
D(P \mid Q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}
\]
Note that while $D(P \mid Q) = D(Q \mid P)$, $JSD(P \mid Q)$ is symmetric in that $JSD(P \mid Q) = JSD(Q \mid P)$.

In comparing compositional similarity between foveal and peripheral cell classes, we used average frequencies across all replicates for foveal PRs, BCs, HCs, ACs and RGCs, but only BCs, HCs, ACs and RGCs in the periphery. This is because our collection procedure (Figure S1B) methods selected against peripheral PRs. We therefore used a published estimate of peripheral PR composition: 95% rods, 4.75% M/L cones and 0.25% S cones (Roorda et al., 2001; Wikler et al., 1990). In addition, we considered only the CD73- samples for ACs because the CD90+ samples differentially excluded some AC types. For peripheral ACs, we only used their composition in the CD73- samples (see above). We expect rods to be underrepresented in our peripheral samples due to our collection procedure.

Transcriptional Mapping of Cell Types across Species

Mouse. We transcriptionally related macaque cones, HC, BC, AC, and RGC types to their mouse counterparts from earlier publications using the same approach that related foveal to peripheral types, with minor modifications (see below). We conducted the following mappings:

1. 11 macaque peripheral BC clusters (BB/GB* was considered as a single cluster and then subclustered post hoc) were mapped to 15 mouse BC types published in our earlier study that identified these types molecularly and matched them to morphology (Shekhar et al., 2016).

2. 34 Macaque peripheral AC clusters were mapped to 21 mouse AC clusters identified in our previous whole-retina study (Macosko et al., 2015), which represents an incomplete molecular characterization of ACs, estimated to contain > 60 types based on morphological (Diamond, 2017) and molecular (data not shown) diversity.

3. Macaque peripheral H1 and H2 were transcriptionally related to cells from a single cluster of mouse HCs in our previous whole-retina study (Macosko et al., 2015) to determine whether mouse HCs were molecularly more similar to one of the two types.

4. 18 macaque peripheral RGC clusters were mapped to a recently published dataset of postnatal day 5 (P5) mouse RGCs, which identified 40 distinct molecular clusters (Rheaume et al., 2018).

5. As we did not sample peripheral S-cones, we related macaque foveal M/L and S cones to mouse cones from our previous full retina data (Macosko et al., 2015). We computationally separated mouse cones into those that exclusively expressed Opn1sw or Opn1mw to enrich for pure S-cones and pure M-cones, respectively.

In all cases except HCs, we trained the classifier on the mouse types, and mapped the macaque cells on to these types. In each case 1-5 above, we trained RF/Xgboost classifiers on the training data (mouse for Cones, BCs, ACs, RGCs and macaque for HC) using as features the common set of highly variable genes (HVGs) in both the mouse and the macaque datasets among the 1:1 orthologs. Restricting the features to the common set of HVG orthologs was important for the performance of the classifier; in our initial tests, we found that using HVG orthologs identified only in one of the two species resulted in mappings that were more diffuse, likely due to genes that expressed in one species at high levels but, were completely absent in the other due to transcriptional rewiring. However, we emphasize that no manual curation of the feature set was performed to favor or disfavor certain genes based on their cell-type specific expression. We trained the classifier using 80% of the cells in the relevant mouse dataset, and validated it on the “held-out” cells in that dataset, which showed excellent performance in all cases. Next, we applied the classifier on the test set (macaque Cones, BCs, ACs, RGCs and mouse HCs), and assigned each cell an identity in the other species. As above, cluster identity of cells in the test set was not used to guide the mapping. Mappings of cell types across species were visualized using confusion matrices for Cones, BCs, ACs and RGCs (Figures 5A and 5C–5E) and a barplot for HCs (Figure 5B). A mapping between a test cluster C_{test} and a training cluster C_{train} was considered 1:1 if > 75% of cells from C_{test} mapped to P, and if < 5% of cells from every other test cluster mapped to C_{train}.

Human. We related human BC clusters to macaque BC clusters using an approach similar to that described above for mouse. We trained a classifier on the macaque peripheral BC data, applied it to map each human BC to a macaque cluster, and visualized the resulting confusion matrix to identify 1:1 matches (Figure 6F).

Conservation of Transcription Factor (TF) Codes in Mouse and Macaque RGCs

We downloaded a curated list of human and mouse transcription factors from the TFCat Transcription Factor Database Catalog (www.tfcat.ca), CIS-BP database (http://cisbp.cbbr.utoronto.ca/) and (Lambert et al., 2018), and used these to assemble a corresponding list of macaque transcription factors from our orthology list (see above). We filtered this list in two ways. First, we restricted the list to those TFs that had 1:1 mouse and macaque orthologs. Second, we only considered those TFs that were expressed (> 0 UMIs/cell) in > 25% of the cells in at least one cluster.

For each of the remaining TFs, we computed a TF specificity score (TFSS) among RGC types separately in macaque and mice. Specifically, for a transcription factor t, we computed a vector \hat{p}_t of the fraction of cells expressing t in every RGC cluster. For example, $\hat{p}_t = (0.7, 0, 0.3, \ldots)$ implies that 70% of cells in RGC cluster 1, 0% of cells in cluster 2, 30% in cluster 3, and so on, express transcription factor t. We normalized \hat{p}_t to sum to 1, and computed the Shannon index of the resulting normalized vector,

$$\text{TFSS} (t) = -\sum_{\text{clust}} p_{ti} \ln p_{ti}.$$
We computed TFSSmouse\((t) \) and TFSSmacaque\((t) \) for all filtered transcription factors \(t (n = 93) \), and compared them (Figure 5G). Note that constitutively expressed TFs like Pou4f1/Six6 have low values on the plot, because of their low Shannon indices.

To compute TF co-expression scores and compare across species, we further filtered the 1:1 orthologous TF pairs to only include those TFs that are expressed in at least 15% of clusters in both species. For each species, we then binarized TF expression in RGC clusters as a matrix \(T \), where \(T(t, c) = 1 \) if TF \(t \) is expressed in at least 25% of cells in cluster \(c \). For every TF \(t \), we computed its probability of expression in types, \(\alpha(t) \), in any species as,

\[
\alpha(t) = \frac{1}{N_c} \sum_c T(t, c)
\]

Here, \(N_c \) refers to the number of clusters. The observed probability of co-expression of TFs \(t_1 \) and \(t_2 \), \(A(t_1, t_2) \), can be computed as,

\[
A(t_1, t_2) = \frac{1}{N_c} \sum_c T(t_1, c) \times T(t_2, c)
\]

We compute the TF co-expression scores (TFCS) in either species as,

\[
\text{TFCS}\,(t_1, t_2) = \log \left(\frac{\text{Expected co-expression probability}}{\text{Observed co-expression probability}} \right) = \log \left(\frac{A(t_1, t_2)}{\alpha(t_1) \alpha(t_2)} \right)
\]

Figure S5G compares TFCS\(\text{mouse}(t_1, t_2) \) and TFCS\(\text{macaque}(t_1, t_2) \).

Evaluating Cell-Type Specific Expression of Disease Associated Loci

We assembled lists of genome-wide associated study genes for prominent retinal diseases that cause blindness – primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG), cone-rod dystrophy (CRD), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), age-related macular degeneration (AMD) and diabetic macular edema (DME) from (Farrar et al., 2017; Fritsche et al., 2016; Graham et al., 2018; Wiggs and Pasquale, 2017; Zeitz et al., 2015).

To facilitate 1:1 comparison between the fovea and the periphery, we assigned each foveal cell a peripheral type identity using the Retina, Cell (2019), https://doi.org/10.1016/j.cell.2019.01.004

We computed the TF co-expression scores and compared across species, we further filtered the 1:1 orthologous TF pairs to only include those TFs that are expressed in at least 15% of clusters in both species. For each species, we then binarized TF expression in RGC clusters as a matrix \(T \), where \(T(t, c) = 1 \) if TF \(t \) is expressed in at least 25% of cells in cluster \(c \). For every TF \(t \), we computed its probability of expression in types, \(\alpha(t) \), in any species as,

\[
\alpha(t) = \frac{1}{N_c} \sum_c T(t, c)
\]

Here, \(N_c \) refers to the number of clusters. The observed probability of co-expression of TFs \(t_1 \) and \(t_2 \), \(A(t_1, t_2) \), can be computed as,

\[
A(t_1, t_2) = \frac{1}{N_c} \sum_c T(t_1, c) \times T(t_2, c)
\]

We compute the TF co-expression scores (TFCS) in either species as,

\[
\text{TFCS}\,(t_1, t_2) = \log \left(\frac{\text{Expected co-expression probability}}{\text{Observed co-expression probability}} \right) = \log \left(\frac{A(t_1, t_2)}{\alpha(t_1) \alpha(t_2)} \right)
\]

Figure S5G compares TFCS\(\text{mouse}(t_1, t_2) \) and TFCS\(\text{macaque}(t_1, t_2) \).

We visualized expression patterns of the disease genes in our atlas using one of three visualizations:

1. Dotplots, which show cell-type resolution (as in Figure 7D),
2. Heatmaps showing relative expression of individual genes in major cell classes (Figures 7B and S7), and
3. Heatmap showing aggregated expression of groups of genes corresponding to individual diseases in major cell classes (Figure 7A). While 2. and 3. lack cell-type resolution, they do show statistical enrichment of genes and gene groups in specific cell classes, and differences in fovea and periphery, if they exist.

For each of the fovea and periphery, we summarized the expression of all disease genes (see above) across all cell types, by computing two matrices \(E \) and \(F \). For gene \(g \) and cell-type \(C \), \(F(g,C) \) was the fraction of cells in cell type \(C \) that had non-zero expression (> 0 UMIs) of \(g \), and \(E(g,C) \) was the average number of transcripts in cells with non-zero expression. To remove outliers, we capped values in \(E \) to the 99.5\(^{th} \) quantile of expression. We then computed a matrix of gene expression scores for all genes across all cell types as the product of these two matrices,

\[
\hat{E} = EF
\]

For (2), we computed the expression strength \(S(g,C) \) of each gene \(g \) in a cell class \(C \) (one of Rods, Cones, HCs, BCs, ACs, RGCs, and non-neuronal cells)

\[
S(g, C) = \max_{c \in C} \hat{E}(g, c)
\]

Here, we computed the maximum, rather than the average or aggregate, to highlight specific instances of highly cell-type specific expression of genes in a class. We combined \(S_{\text{fovea}}(g,C) \) and \(S_{\text{periphery}}(g,C) \), and visualized them as a single heatmap, where we z-scored the rows (corresponding to genes) to highlight relative expression strengths \(S_{\text{comb}}(g,C) \).

Specific rows are highlighted in Figure 6I. Here, the initial filtering of removing genes that were not expressed in at least 20% of cells in any cell type avoided spurious patterns.

For (3), we subset \(S_{\text{comb}}(g,C) \) by disease and computed the mean relative expression strengths within each cell type group for each disease. This aggregate expression strength was visualized in Figure 7A.

In Figure S7, we visualized the relative expression strengths of genes grouped by disease as in Figure 7B, but after subdividing non-neuronal cells into MGs, Pericytes, Endothelial cells and Microglia to highlight differential expression among these types.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical methods and packages used for performing various types analysis in this work are cited where appropriate in the STAR Methods text. All the analysis was performing using the R statistical language in the RStudio IDE. Expression patterns of genes across cell clusters are shown in dotplots (e.g., Figure 2B), which simultaneously depict the fraction of cells in a cell cluster/type (column) that express a particular (row) based on the size of the dot, and the average number of transcripts in cluster based on the color scale, as indicated in the legends. In box and whisker plots depicting gene expression differences foveal and peripheral types, black horizontal line represents the median expression value, colored bars represent the interquartile range, and vertical lines span the minimum and maximum values. Stars indicate > 2-fold changes based on mean expression values.

The concordance between two sets of clusters as assessed by the multi-class classification approach (see METHOD DETAILS) are visualized using a “Confusion Matrix” (e.g., foveal BCs versus peripheral BCs in Figure 3A, or macaque BCs versus mouse BCs in Figure 5E). The concordance between the two data clusterings is quantified using the Adjusted Rand Index (ARI).

Differential expression of genes between clusters were evaluated using the MAST test (Finak et al., 2015). We employed multiple hypothesis correction wherever significance was evaluated across multiple statistical tests, only considering genes more significant than False-discovery rate (FDR) threshold of 0.001. We provide FDR corrected p values for specific instances of fovea versus periphery differential expression reported in Figure 4.

DATA AND SOFTWARE AVAILABILITY

The accession number for the following data files reported in this paper is GEO: GSE118480 – Raw and processed data files for the macaque single-cell RNA-seq experiments. The accession number for the following data files reported in this paper is SRA: PRJNA514024 – (1) Raw data files for the long-read bulk RNA-seq data from Tru-Seq libraries, and (2) gene transfer format (gtf) file summarizing the transcriptome for M. fascicularis used in this study (Methods S1). The accession number for the following data files reported in this paper is DUOS-000105 – Raw and processed data files for the human single-cell RNA-seq experiments. The macaque single cell data can be visualized in the Broad Institute’s Single Cell Portal at https://portals.broadinstitute.org/single_cell. Instructions are provided in supplementary materials.
Figure S1. Foveal Specializations, Experimental Design and Data Quality, Related to Figure 1

A. (Top) The position of fovea and optic disc in flat mounted retina. (Lower left) Sketch of foveal and peripheral cones: foveal cones are longer and more slender than peripheral cones, and bear longer axons. Adapted from (Greeff, 1900). (Lower right) Foveal and peripheral retinal circuits: In the fovea, one cone provides input to two midget BCs, each of which innervates one midget RGC for a cone:midget RGC ratio of 1:2. In the periphery, multiple cones provide input to each midget BC, and multiple midget BCs innervate one midget RGC, for a cone:midget RGC ratio of $\sim 10:1$. Thus the degree of convergence of cones onto interneurons and RGCs differs by an order of magnitude between the fovea and periphery. In addition, peripheral MGCs receive input indirectly (via synapses from rod BCs to AII ACs to cone BCs) from hundreds of rods; whereas foveal MGCs receive little if any rod input. Thus, the total difference in PR:MGC convergence is even greater between regions. Adapted from (Kolb and Marshak, 2003).
B. scRNA-seq workflow. Cells were dissociated from <1.5 mm-diameter foveal samples and collected without further processing. Because the peripheral retina is dominated by rod PRs (~80% of cells), we used magnetic columns to deplete rods (CD73+) or enrich RGCs (CD90+).

C. Mapping rates of scRNA-seq reads to the genome, exonic and transcriptomic (exonic with splice-junction constraints) regions using three different transcriptomic references – UCSC (University of California Santa Cruz Genome Browser reference for Macaca mulatta, a related but different species), NCBI (the publicly available reference for Macaca fascicularis) and NCBI + TruSeq (the retina specific transcriptome assembled in this study using the NCBI reference as a starting point). Note that the new transcriptome we used increased the percentage of exonic reads that could be assigned to a gene by ~25% compared to the NCBI reference for Macaca fascicularis (from 37% to 47%) and by ~68% compared to the NCBI reference for Macaca mulatta (from 28% to 47%).

D. Comparison of expression levels (log2(number of transcripts + 1)) of common genes between the NCBI and NCBI + TruSeq references, exhibits a high degree of correlation. A greater number of gene loci exhibit increased expression levels due to higher mapping rate (panel C) as evident by the fact that the majority of points lie above the red line (x = y). This is particularly true for genes expressed at low levels, as shown in the inset. A small number of loci were mapped less well in the improved transcriptome because new transcripts could not be assigned unambiguously to a single gene.

E. Example of improved gene-body definition in the assembled transcriptome of AP4B1 as visualized using the Integrated Genomics Viewer (IGV). The lower panel shows the gene-body definitions for the NCBI and the NCBI + TruSeq references. In this example, the NCBI+TruSeq reference includes a distal 3' exon that is absent from the NCBI reference. The middle panel show the pile-up of individual reads from a sample 10X run mapped to the expanded locus and the upper panels show the read coverage. Blue shading connects portions of a read that spans a splice junction. The coverage plot shows that a large proportion of reads mapped to 3' exons present in the NCBI + TruSeq reference (highlighted in red) but absent from the NCBI reference.

F. Heatmap of Pearson correlation coefficients between each pair of 92,628 foveal cells (left) or 73,053 peripheral cells (right) (rows and columns) ordered by cell class (annotated as color bars along row and column). “Other” cells are comprised of pericytes, vascular endothelial cells and microglia.

G. Examples illustrating the lack of strong batch effects. tSNE visualization of foveal BCs (left, as in Figure 1F) and peripheral RGCs (right, as in Figure 1H), which are now colored by their animal of origin (M1-7), shows the representation of all animals across clusters.

H., I. Proportions of major cell classes in foveal (H) and peripheral (I) samples colored by experimental batches. Peripheral samples (I) colored using palettes corresponding to one of four processing methods prior to collection: (1) CD90+: RGCs were enriched on a magnetic column using beads conjugated with antibodies to the RGC class marker, Thy1 (CD90). Cells that did not bind were discarded, and bound cells were eluted and used. (2) CD73-: Rod photoreceptors were depleted by passage over a magnetic column containing beads conjugated with antibodies to the rod-specific marker CD73. Unbound cells were used. (3) Mixed: In this experiment CD90+ cells (magnetic column selection) and non-enriched cells were mixed 1:1 prior to use. (4) CD90+PNA: In this experiment, PNA (Blanks and Johnson, 1984) was added to enrich for cones. M4 here corresponds to the same animal. Each experimental batch corresponds to an independent animal, denoted M1-M7. The entire fovea was dissociated, and cells were collected for unbiased sampling of all types. Sequencing batches, typically containing 3000-5000 cells each, are aggregated within experiments as they did not exhibit any appreciable batch effects. Cell numbers in each experimental batch are indicated in parentheses.
Figure S2. Characterization of Cone and BC Types, Related to Figure 2

A. The reference macaque genome contains a single gene locus named “OPN1MW/OPN1LW” and, because of their high sequence similarity revealed from cloned cDNAs (98%; Onishi et al., 2002), our NCBI+TruSeq reference did not distinguish OPN1MW from OPN1LW. We therefore analyzed single-nucleotide polymorphisms (SNPs) to distinguish OPN1MW- and OPN1LW-specific expression in individual cones. An Integrated Genomics Viewer (IGV) screenshot of reads from a representative sample aligning to exon 3 of the loci shows that SNPs (arrows) are distinguishable from random sequencing errors at known locations (Onishi et al., 2002) based on their higher biallelic frequency.

B. Counts of OPN1LW-specific SNPs versus OPN1MW-specific SNPs for every M, L cone (dots) show that most M/L cones in our data exclusively express either OPN1MW or OPN1LW. The remaining cells exhibit a mixed identity but only 0.8% show appreciable expression of both genes. It is generally believed that all M/L... (legend continued on next page)
cones express either M or L opsin but not both. However, experimental evidence for this conclusion is lacking; the most authoritative studies, based on spectrophotometry of individual human cones in live retinae, cannot exclude the possibility that up to 5% of M/L express both opsins (Hofer et al., 2005).

C. Proportions of M, L and mixed M/L cones in the fovea.

D. Comparison of average transcriptional profiles of peripheral M-cones and L-cones identified through analysis of SNPs, as in Figure 2A. As in the fovea, no genes other than OPN1MW and OPN1LW differ significantly in expression levels (>1.2 fold at p < 0.01, MAST test) between the two cone types. Dashed red line, y = x. As noted in the main text, the question of specificity in connections of M and L with synaptic partners has been controversial. If connectivity is selective, it is likely that M and L cones express different recognition molecules, implying transcriptional differences between the two that extend beyond the opsin genes. In addition to some physiological evidence for specificity, there is a report of possible structural differences between the terminals of M and L cones (Lee et al., 2012). If wiring is nonselective no additional expression differences between the two cone types would be needed. Consistent with the idea, several physiological studies detect little or no selectivity (Wool et al., 2018) in chromatic inputs to MGC surrounds. A prevalent model is that the choice between expression of M and L opsin is stochastic, mediated by regulatory elements at the M/L locus (Wang et al., 1999). In this model no additional transcriptional differences would be predicted. Our results are consistent with this view. However, we cannot draw firm conclusions because it is possible that transcriptional differences are present during development but not maintained into adulthood.

E. Proportions of M, L and mixed M/L cones in the peripheral retina.

F. Additional FISH validations of markers that distinguish M/L-cones (MYH4 and VOPP1) from S-cones (TTR) (see Figure 2B). Circles denote location of S cones. Scale bar is 20 μm. DAPI staining is in blue.

G. Gene expression patterns (rows) of broad markers (top panel) and type-enriched markers (bottom panel) for foveal/peripheral BC types (columns) ordered using hierarchical clustering (see dendrogram on top). Representation as in Figure 2D.

H. FGF7 and DOPEY2 are enriched in distinct subpopulations within a single cluster that appears to contain both Blue Bipolar and Giant Bipolar types (BB/GB* cluster). Data were extracted from the full foveal and peripheral BC datasets and visualized by tSNE, as in Figure 1F. As DOPEY2 (hi) cells correspond to the BB type (Figure S2N), we speculate that the DOPEY2 (low), FGF7 (hi) subpopulation corresponds to the GB type. These assignments are consistent with their relative frequencies (Table S2). Colors represent expression levels. Table S2 also includes references to prior studies that document type-specific expression of BC markers in primates.

I. Expression of FEZF1, NXPH1, NXPH2, and SCGN in foveal (left) and peripheral BCs (right) visualized by tSNE as in Figs.1F. Coexpression of FEZF1, NXPH1 and NXPH2 mark OFFx BCs in fovea (arrows), but they are not coexpressed in periphery, supporting the claim that OFFx may be a fovea-specific type. SCGN is expressed by DB1 and DB6 (see panels G, J, K) but not by OFFx. SCGN labels two BC types in the fovea, DB6 (magenta circle), which is also LHX3+ (see Figs. 2D,E) and DB1 (white circle), which is LHX3–. K. DB1 (SCGN+) is also VSX1+.

L., M. TSHB (L) and QPCT (M) label two distinct types of PRKCA+ BCs with distinct morphologies. Based on their abundance, TSHB+ cells are rod bipolars (RB) and QPCT+ cells could be DB5* (Table S2). The axon of DB5* was traced and is represented by a white dashed line. In contrast, PRKCA is a selective rod bipolar marker in mice (Shekhar et al., 2016).

N. A viral labeled BB cell is DOPEY2 positive. BB type has a distinguishable bifurcated dendritic morphology (Mariani, 1984).

O. TTR is expressed by PRKCA+ DB4. Arrowheads indicate the DB4 axon terminal.

In J-O, sketches were redrawn from (Tsukamoto and Omi, 2016). Scale bar, 20 μm. DAPI staining is in blue.
Figure S3. Histological Validation of Markers for RGCs, Related to Figure 2

A. Gene expression patterns (rows) of broad (top panel) and type-enriched markers (bottom panel) for peripheral RGC clusters (columns) ordered by transcriptional similarity. Representation as in Figure 2 F. See Figure 3 B for transcriptional mapping of foveal and peripheral RGC clusters.

B. FISH combined with viral labeling shows MEIS2 expression by an OFF PGC with dendrites that arborize in the S1/S2 sublaminae of the IPL.

C. Triple-labeling of a foveal section shows that all foveal RGCs are SLC17A6+ and RBPMS+ (immunohistochemistry) but only a minority are RBPMS2+. Consistent with its expression by PGCs but not MGCs (panel A). SLC17A6 encodes VGlut2, which is a pan-RGC marker in rodents, but not expressed by other cells in the ganglion cell layer (Stella et al., 2008). RBPMS is a selective marker for RGCs in both rodents and macaques (Rodriguez et al., 2014) but to our knowledge expression of its homolog, Rbpms2, has not been reported in mouse retina.

D.-K. Double FISH shows that MEIS2 (D), EOMES (E), TPBG (F), C4B (G), SEMA5A (H), CHRNA2 (I), KCNA1 (J), and SPP1 (K) colocalize with RGCs (SLC17A6+) in peripheral retina. Arrowheads indicate double positive cells.

(legend continued on next page)
L.-O. Double FISH shows that CA8 (L), CHRNA2 (M), and SEMA5A (N) label subsets of SPP1-positive RGCs. In contrast, only a small fraction of MEIS2+ RGCs are SPP1+ (O); these are OFF PGCs (see panel B). Arrowheads indicate double positive cells; arrows indicate SPP1 single positive cells.

P. Viral labeling of foveal RGCs shows that the somata of OFF-MGCs (top) are localized at the outer half of the GCL while those of ON-MGCs are located at the inner half (bottom).

Q. Viral labeling combined with immunostaining shows that a PGC expresses SPP1 (upper) but not a MGC (lower). Somata positions of labeled RGCs are circled in the middle panel. Cells are from the temporal peripheral retina.

Scale bars is 20 μm (B, C, P, Q) and 50 μm (D-O).
Figure S4. Differences in Proportions of Cell Types and Gene Expression between the Fovea and Peripheral Retina, Related to Figures 3, 4

A. Gene expression patterns (rows) of broad markers (top panel) and type-enriched markers (bottom panel) for 34 peripheral AC cluster (columns) ordered by transcriptional similarity, and their approximate segregation is highlighted by a black dashed line. Representation as in Figure S2 G. Annotation bar on the top highlights GABAergic (n = 26) and Glycinergic (n = 8) types. Key known types of ACs including Starburst AC (SAC), All ACs, Excitatory (VGluT3+) AC and (legend continued on next page)
Vasoactive Intestinal Peptide expressing (VIP+) AC, catecholaminergic (Cat+) and SEG AC are highlighted below. Rodent AC types have been described in detail (Diamond, 2017; Haverkamp and Wässle, 2004; Kay et al., 2011; Krishnaswamy et al., 2015; Park et al., 2015; Zhang et al., 2007) as have several primate equivalents (Klump et al., 2009; Lammerding-Köppel et al., 1991; Majumdar et al., 2008; Mariani and Hokoc, 1988; Mills and Massey, 1999; Yamada et al., 2003).

B. Comparison of frequencies of matched AC types between the foveal (x axis) and peripheral datasets (y axis). To facilitate comparison, we assigned each foveal AC a peripheral identity based on Figure 3C and then compare frequencies of 1:1 matched types. The peripheral ACs are subdivided into those originating from CD90+ samples (upper) and CD73- samples (lower). Values are plotted on a ln-ln scale to highlight low frequency types. The poor correlation of the AC types in the CD90+ sample with the fovea suggests a biased labeling of AC types by this marker. Hence, we only used AC cluster frequencies in the CD73- samples, which show a much higher correlation to the foveal frequencies, to compute compositional similarities between the fovea and the periphery.

C. Expanded version of Figure 4F, showing higher expression levels of GABRA receptor subunits GABRA1/2, GABRB2 and GABRG2 in the majority peripheral RGC compared to foveal RGC types. For 1:1 comparison each foveal RGC is assigned a peripheral identity based on Figure 3B.

D. Gene expression differences between foveal and peripheral MGs. The average number of transcripts per expressing cells (colors) are normalized so as to sum up to 1 along each row to highlight relative differences.

E. Co-labeling of TTR with both OPN1LW and OPN1SW in the fovea suggests that it is expressed by both foveal M/L and S cones.

F. Foveal cones were CALB1-negative, as documented in (Hendrickson et al., 2007).

Scale bars, 20 μm in E, and 300 μm in E,F. Arrows indicate the center of fovea.

In the bar and whisker plots in C, black horizontal line, median; bars, interquartile range; vertical lines, minimum and maximum.
Figure S5. Comparison of Mouse and Macaque Cell Types, Related to Figure 5

A. Transcriptional correspondence between macaque (rows) and mouse (columns) cell classes. All types are included within each class. Representation as in Figure 5A.

B. Mouse S cones express higher levels of Ccdc136 compared to M cones, the mouse ortholog of macaque S cone marker CCDC136 (Figure 2B). Other S cone or M/L cone markers in macaque, however, are not shared in mice. CCDC136 locus is located near the OPN1SW locus in both mouse and human (~16 kb separation on human chromosome 7 and mouse chromosome 6) suggesting the possibility of transcriptional co-regulation, possibly by NRL (Brooks et al., 2011). TRHB, selectively expressed by OPN1MW-expressing mouse cones and M/L macaque cones, has been implicated in differentiation of this cone type (Ng et al., 2001).

C. Mouse HCs are transcriptionally more similar to macaque H1 (Figure 5B), and do not express markers that are specific to macaque H2.

D. SPP1 is a macaque HC marker gene and H1 and H2 are distinguished by the expression of CALB1. Double FISH of SPP1 and CALB1 in a peripheral retina section labels both H1 (SPP1+CALB1-, magenta arrows) and H2 (SPP1+CALB1+, orange arrows).

(legend continued on next page)
E. Validations of conserved All markers: (Top) All ACs, identifiable by their unique morphology, are CALB2+TFAP2B+. Double FISH shows that coexpression of All marker GJD2 (Macosko et al., 2015) with CALB2 (middle) and SLC6A9 (bottom).

F. Comparison of transcription factor co-expression scores (TFCS, see STAR Methods) of pairs of transcription factors for macaque (y axis) and mouse (x axis) RGC types. Dashed red lines denote the x and the y axes. The relative predominance of points in the (+,+)- and (-,-)- quadrants compared to the (+,-)- and (-,+)- quadrants suggests that synergistic and antagonistic relationships between TFs are largely preserved across the species. Red boxes highlight several examples in which TF pairs show similar patterns of co-expression or mutually exclusive expression in both species. Expression of transcription factors in mouse RGC subsets is documented in (Cherry et al., 2011; Liu et al., 2018; Mao et al., 2014; Peng et al., 2017; Rousso et al., 2016; Sweeney et al., 2019).

Scale bar, 20 μm
Figure S6. Key Molecular Features Identified from the Macaque Retinal Atlas Are Conserved in Marmosets and Humans, Related to Figure 6

A. TTR and CCDC136 positive S cones in marmoset

B. H1 (SPP1+CALB1-) and H2 (SPP1+CALB1+) HC in the marmoset peripheral retina.

C. Foveal cones are GNGT1 positive in the marmoset. Staining marmoset foveal and peripheral retinal tissues with antibodies against GNGT1, OPN1LW, and 7G6 (cone arrestin) shows that GNGT1 is specifically expressed by foveal cones and localized at the outer segments (indicated by the expression of OPN1LW) of foveal cones. Arrows indicate the center of fovea.

D. The expression of MEIS2 in the outer half of the human foveal GCL layer.

E. SPP1 is expressed by peripheral Müller glia (VIM) respectively in human retina. Arrows indicate the center of fovea.

F. tSNE plot of cells from human bipolar cluster DB2+3b, color coded by the macaque peripheral bipolar type that each human cell mapped to. Gray indicating cells mapped to clusters other than DB2 and DB3b.

G. Expression of DB2 and DB3b genes in the DB2+3b cluster.

H. Expression of the same gene sets as G in macaque and human peripheral bipolar cells

Scale bar, 20 μm (A, B, C, D), 100 μm (C), and 300 μm (E). DAPI staining is in blue.
Figure S7. Expression Patterns of Retinal-Disease Associated Genes across Major Cell Classes in Macaque Fovea and Periphery, as Well as Mouse Retina, Related to Figure 7

Red-blue heatmaps show expression patterns of individual retinal-disease associated genes (rows) by cell classes (columns), for macaque and mouse respectively, as Figure 7B. For each gene, associated retinal diseases are shown in white-black heatmaps. For genes in the macaque transcriptome that have been mapped, but not characterized (e.g. LOC102123115), their predicted human orthologs are indicated in parenthesis.