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Distinct representation of cue-outcome
association by D1 and D2 neurons in the
ventral striatum’s olfactory tubercle

Nuné Martiros, Vikrant Kapoor, Spencer E Kim, Venkatesh N Murthy*

Department of Molecular & Cellular Biology and Center for Brain Science, Harvard
University, Cambridge, United States

Abstract Positive and negative associations acquired through olfactory experience are thought
to be especially strong and long-lasting. The conserved direct olfactory sensory input to the ventral
striatal olfactory tubercle (OT) and its convergence with dense dopaminergic input to the OT could
underlie this privileged form of associative memory, but how this process occurs is not well under-
stood. We imaged the activity of the two canonical types of striatal neurons, expressing D1- or
D2-type dopamine receptors, in the OT at cellular resolution while mice learned odor-outcome
associations ranging from aversive to rewarding. D1 and D2 neurons both responded to rewarding
and aversive odors. D1 neurons in the OT robustly and bidirectionally represented odor valence,
responding similarly to odors predicting similar outcomes regardless of odor identity. This valence
representation persisted even in the absence of a licking response to the odors and in the absence
of the outcomes, indicating a true transformation of odor sensory information by D1 OT neurons.
In contrast, D2 neuronal representation of the odor-outcome associations was weaker, contingent
on a licking response by the mouse, and D2 neurons were more selective for odor identity than
valence. Stimulus valence coding in the OT was modality-sensitive, with separate sets of D1 neurons
responding to odors and sounds predicting the same outcomes, suggesting that integration of
multimodal valence information happens downstream of the OT. Our results point to distinct repre-
sentation of identity and valence of odor stimuli by D1 and D2 neurons in the OT.

Editor's evaluation

Martiros et al. monitored the activity of dopamine D1 and D2-expressing neurons within the ventral
striatum olfactory tubercle using 2-photon microscopy, as mice learned to associate odors and tones
with either positive or aversive outcomes. Authors find differential roles for these neurons in the
learning of odor valence and tone outcome associations. Overall, this study was deemed as an inter-
esting and important contribution to our understanding of the neural basis of cue encoding.

Introduction

Assigning value to stimuli in the external environment and subsequently adjusting behavior on the
basis of those learned values is a primary function of the nervous system. Understanding this process
is especially important because certain associations result in maladaptive behaviors such as compul-
sions, binge eating, and drug addiction (Everitt and Robbins, 2005; Keiflin and Janak, 2015; Wise
and Koob, 2014). Olfaction or chemosensation is thought to have preceded other sensory modal-
ities in evolution as the first direct link of the nervous system to the external environment (Ache
and Young, 2005; Kaas, 2008; Schneider, 2013) to allow for such stimulus value learning. Olfactory
sensory pathways to the forebrain remained relatively conserved across phyla while visual, auditory,
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and somatosensory information was routed in polysynaptic pathways through thalamus and cortex
(Purves and Fitzpatrick, 2001; Schneider, 2013). Due to this, the olfactory system has uniquely direct
access to limbic centers of the brain. In particular, the olfactory tubercle (OT), a ventral basal ganglia
structure known to be involved in reward processing (Gadziola et al., 2015, Hagamen et al., 1977,
Ikemoto, 2003; Ikemoto, 2007; Wesson and Wilson, 2011; Zhang et al., 2017), is a direct recipient
of a stream of olfactory input from a distinct class of olfactory bulb neurons, the tufted cells (Igarashi
et al., 2012). In addition to olfactory sensory input, the OT receives dense dopaminergic input from
the ventral tegmental area (VTA), similar to other ventral striatal regions — suggesting that the OT is
ideally suited to integrate these inputs to assign valence to olfactory stimuli based on experience. It
has been described in humans that olfactory sensory cues may be more powerfully linked to emotional
memories than other types of sensory cues (Miles and Berntsen, 2011; Pointer and Bond, 1998;
Reid et al., 2015), and that odor associations can be important in psychological health and disease
(Daniels and Vermetten, 2016; Herz, 2016), suggesting a possible specialized form of olfactory
memory in limbic regions such as the OT.

The OT has been implicated in motivation as well as olfactory processing (Hagamen et al., 1977,
lkemoto, 2007, Koob et al., 1978; Koob and Volkow, 2010; Wesson and Wilson, 2011; Wright and
Wesson, 2021). As an example, self-administration of cocaine into the OT was found to be even more
reinforcing than administration into nucleus accumbens, a key region known to be involved in reward,
motivation, and addiction (Ilkemoto, 2003). Stimulation of OT neurons or dopaminergic terminals in
the OT has been shown to be effective in inducing odor preference or approach (Fitzgerald et al.,
2014; Gadziola et al., 2020; Zhang et al., 2017). Electrophysiological recordings in the OT have
revealed that OT neurons differentiate between rewarded and unrewarded odors in a go/no-go task,
and quickly track changing odor-outcome contingencies (Gadziola et al., 2015; Millman and Murthy,
2020). These effects may extend to humans with elevated OT activity and development of place
preference in response to attractive odorants (Midroit et al., 2021). Moreover, the OT appears to be
the olfactory processing site most strongly involved in tracking odor-outcome associations, as direct
comparison to recordings in posterior piriform cortex revealed weaker representation of odor-reward
contingency (Gadziola et al., 2020; Millman and Murthy, 2020). The much higher density of dopami-
nergic input to the OT as compared to piriform cortex is likely relevant in differentiating the functions
of these two parallel olfactory processing regions.

This evidence establishes OT as a key region likely involved in learning odor-outcome associations
and assigning emotional tags to odors. However, many questions remain unanswered regarding the
nature of the information encoded by OT neurons and the role of the different neuronal types within
the OT in this function. OT is a part of the ventral striatum and consists of spiny projection neurons
(SPNs). Striatal SPNs are roughly divided into D1-type and D2-type dopamine receptor expressing
SPNs, and these two groups of SPNs also have different output projection patterns (Bolam et al.,
2000; Gerfen and Surmeier, 2011). This differentiation of OT projection neurons into D1 and D2
type is especially relevant when considering the role of dopaminergic input in shaping odor valence
representation. D1- and D2-type dopamine receptors are thought to differ in terms of their response
to dopamine, in particular the plasticity rules regulated by dopamine (Gerfen and Surmeier, 2011,
Lovinger, 2010; Nicola et al., 2000). To address the role of these neuronal subtypes in the OT, we
conducted the first (to our knowledge) two-photon imaging of specific neuronal types in the OT in
behaving mice. We then used experimental manipulations to address questions about the role of the
OT and these neuronal types in the stimulus identity-valence-response transformation function.

Results

To investigate the role of D1 and D2 receptor expressing neurons in the OT in odor valence learning,
we imaged the activity of these neuronal populations in the OT using multiphoton microscopy, while
mice learned to associate odors with aversive or rewarding outcomes. Adenoassociated virus that
allows conditional expression of the calcium indicator GCaMP7s in the presence of Cre recombi-
nase was injected into the right OT of Drd1-Cre and Adora2A-Cre mice and a 1 mm cannula was
implanted targeting the OT (Figure 1A, Figure 1—figure supplement 1). After recovery, a Gradient-
Index (GRIN) lens was placed in the cannula, mice were water restricted, habituated to head fixa-
tion, and trained on an odor-outcome conditioning task. Five monomolecular odors were coupled
with graded outcomes ranging from aversive to rewarding (strong airpuff to nose, weak airpuff to
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Figure 1. Two-photon calcium imaging of D1- and D2-type neurons in the olfactory tubercle (OT) during odor-outcome association learning.

(A) Cannula and Gradient-Index (GRIN) lens implantation targeting the OT in Drd1-Cre and Adora2A-Cre mice with AAV9-Syn-FLEX-GCaMP7s virus
injection in the OT. (B) Odor-outcome task structure, odors 1-2 are paired with aversive airpuffs and odors 4-5 are paired with rewarding water drops in
headfixed water restricted mice. Odor-outcome assignments are counterbalanced across mice. (C) Number of anticipatory licks in an example mouse
in a 1 s period after odor onset and prior to water or airpuff delivery. Each training day has 30 trials of each of the five odors. (D) Mean number of
anticipatory licks across 4 days of training in implanted Drd1-Cre mice (n=6, solid) and Adora2A-Cre mice (n=6, dashed). (E) Field of view of GCaMP7s
expressing neurons in a Drd1-Cre mouse. (F) Example imaged neuron with activity in individual odor 5 trials in a single session. Dashed lines indicate
odor onset and water onset. (G) Neuronal activity in field of view of a Drd1-Cre mouse in big airpuff and big water drop trials across days of training.
Small gray dots indicate non-significantly responsive neurons. Day 0 indicates pre-training day in which no odors are presented, only water drops and

airpuffs. Activity is shown in the 1 s period prior to outcome delivery, after odor onset in days 1 and 4.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Two-photon imaging of calcium activity in Drd1-Cre and Adora2A-Cre transgenic mice.

Figure supplement 2. Anticipatory licking in trained mice.

Figure supplement 3. Anticipatory licking for each of the six Drd1-Cre mice.

Figure supplement 4. Cell size distributions for D1 and D2 neurons.

Figure supplement 5. Anticipatory licking of C57BL/6 WT mice with no craniotomy/Gradient-Index (GRIN) lens implant.

nose, no outcome, small water drop, large water drop) (Figure 1B). Odor-outcome assignments
were counterbalanced across mice and the five trial types were randomly interspersed across training
sessions with 30 trials per day of each of the five odors. In each trial, the odor was presented for
1.5 s and the outcome (water or airpuff) was presented 1.3 s after odor onset. Prior to the first day of
odor-outcome training, mice underwent a pre-training session (day 0) in which the airpuff and water
outcomes were presented without any odors. In day 1 of odor-outcome training, mice quickly learned
the odor-outcome contingencies and began licking in anticipation of water delivery in the period after
odor onset prior to water delivery (Figure 1C). By training day 2, anticipatory licking was observed in
implanted Drd1-Cre and Adora2A-Cre mice in response to rewarded odors 4 and 5, and little antici-
patory licking was observed for non-rewarded odors 1-3 Figure 1D, Figure 1—figure supplement 2.
The number of anticipatory licks was greater for the odor that predicted the larger reward, compared
to that predicting smaller reward (2.7+0.35 vs. 2.0+0.24 on day 4 of training, p<0.0001 rank sum
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test, 30 trials each odor in six mice; Figure 1—figure supplement 3). This suggests that the mice can
perceive graded reward outcomes in addition to categorizing odors as rewarding or aversive.

OT neuronal activity robustly and bidirectionally reflects odor-outcome
contingency

D1 neurons in six Drd1-Cre mice (88+13 neurons per mouse, 529 neurons in total) and D2 neurons
in six Adora2A-Cre mice (56+18 neurons per mouse, 338 neurons in total) developed both excit-
atory and inhibitory responses to the task odors across days of training (Figure 1E-G), with the most
rewarded odor typically eliciting the strongest neuronal responses after training. Within the OT, there
are neurons in the islands of Calleja, which express Drd1 (but not A2A). We think the inclusion of
neurons from the islands of Calleja to be rare because of their characteristically small size (~8 pm
diameter) and dense clustering — neither of which appear to be the case in our imaged fields of view
(Figure 1—figure supplement 4). The anticipatory licking of the mice without a GRIN lens implant is
similar to that of the implanted mice (Figure 1—figure supplement 5), suggesting that the implanted
mice are not impaired in their ability to learn the stimulus-outcome associations.

Task-related activity of the population of D1 neurons we recorded was strikingly similar during
the two aversive trial types (Figure 2A, columns 1-2) and similar during the two rewarded trial types
(Figure 2A, columns 4-5) although the identity of the odorants presented during these trials varied
across mice (Figure 2—figure supplement 1). Overall, neurons followed similar activity patterns
during the two rewarded trial types and during the two aversive trial types (Figure 2B-C). Correlation
between the activities of groups of stimulus responsive neurons in each mouse, measured by cosine
similarity, was higher for same outcome trials than for opposite outcome trials after the first training
day (Figure 2D). D1 neurons were more likely to be activated by rewarding odors than aversive odors
(Figure 2E, 38% activated by odor 5 vs. 18% activated by odor 1 on day 4, p<0.00001, Fisher's exact
test). The proportion inhibited by the same stimuli on day 4 was 18% and 13%, respectively, and
not significantly different (p=0.7, Fisher's exact test). Contrary to our expectation, we found that D2
neurons were also more likely to be activated by rewarding stimuli than aversive stimuli (Figure 2E,
36% activated by odor 5 vs. 21% activated by odor 1 on day 4, p=0.003, Fisher's exact test; Figure 2—
figure supplement 2). There was no significant difference between the proportion of D1 and D2
neurons activated in response to the most rewarding odor 5, on day 4 (38% and 36%, respectively,
p=0.74, Fisher's exact test).

Individual D1 neurons are more likely to encode odor valence and D2
neurons more likely to encode odor identity

By using graded odor-outcome associations, we aimed to disambiguate neuronal coding for odor
valence, odor motivational salience, and odor identity. We hypothesized that, in our task, idealized
valence coding neurons would exhibit similar responses to odors of similar valence (Figure 3A, rows
1-2), salience coding neurons would exhibit similar responses to odors of high relevance regard-
less of whether the outcome positive or negative (Figure 3A, row 3), and odor identity responsive
neurons would be most likely to respond to a single individual odor (Figure 3A, last row). In our
dataset, the prevalence of neuronal responses consistent with odor salience coding was very low (3
of 529 D1 neurons were activated for high motivational salience odors 1 and 5, but not odors 2-4, as
compared to 51 neurons activated for positive valence odors 4 and 5, but not odors 1-3, p<0.000001
Fisher's test for D1 and D2 neurons). We formulated a metric to quantify salience (see Materials and
methods, salience score) and found that responses consistent with salience coding were extremely
rare (Figure 3—figure supplement 1). These data indicate that OT neuronal populations are very
sensitive to the sign of the odor valence (aversive or rewarding). Thus, we focused the remainder of
our analysis on odor valence or odor identity coding by D1 and D2 neurons.

We assigned each significantly responsive neuron a valence score by computing a normalized
difference between the neuron’s activity in response to odors of opposite valence and odors of same
valence (Figure 3B, see Materials and methods). Identity scores were also calculated for each neuron
by comparing the activity of the neuron to its most preferred stimulus to its next most preferred
stimulus (see Materials and methods). Individual neurons varied widely in valence and identity scores,
with some neurons having high identity scores and low valence scores (Figure 3C) and other neurons
having high valence scores and low identity scores (Figure 3D). Interestingly, identity scores of D1

Martiros et al. eLife 2022;11:e75463. DOI: https://doi.org/10.7554/eLife.75463 4 of 20


https://doi.org/10.7554/eLife.75463

e Llfe Research article

Neuroscience

= airpuff

Time (s)

Time (s)
2 3

@ odoron
A water/airpuff
B odor off

A = airpuff
E:3
c
e
3
[}
c
T+
c
e
3
[}
c
Time (s)
B
° Activated neurons
c
3 16
8
5 12
S
s 8
£
(3
> 4
2
[
§ 0
®
0 2 4
Time (s)
Cc D

Cosine similarity

Inhibited neurons

*
*

2 3
Training day

odor1 =

odor 2 =

odor3 @

odor4 ¢
odor 5 6

I/I\l\i
same valence

opposite valence

@ no outcome

airpuff

water

Time (s)

day 1
day 2
— day 3
— day 4

D1 neurons

day 1
day 2
— day 3
— day 4

D2 neurons

% of neurons

% of neurons

40
35
30
25
20
15
10

40
35
30
25
20
15
10

& water

Time (s)

% activated neurons
e B
airpuff water
e B
airpuff water

N W
o O

(9]

% of neurons
RGO\
o o

o o

Time (s)

% inhibited neurons

% B

airpuff water

e 7B
airpuff water

auljeseq |ewy-aud wouy abueyd 9,

Figure 2. D1-type neurons in the olfactory tubercle (OT) respond most strongly to rewarded odors and respond similarly to odors of similar outcomes.
(A) Activity of all activated (top) and inhibited (bottom) neurons from six Drd1-Cre mice in five trial types on day 4 of training. Vertical black lines
indicate odor onset and outcome delivery time. Vertical dashed lines in the two right-most panels indicate average time of first lick by mice. Neurons
are grouped by preferred stimulus, arrows on right indicate boundaries between groups. Neuronal activity in the two aversive trial types (columns 1-2)
is similar and neuronal activity in the two rewarding trial types (columns 4-5) is similar. (B) Mean population activity of all activated and inhibited D1
neurons in five trial types. Odor onset at 1 s and outcome onset at 2.3 s. (C) 3D D1 neural population trajectories in five trial types. (D) Cosine similarity
between groups of neurons responding to odor pairs of same valence or opposite valence (five neuronal subgroups as in A with pairwise comparisons,
*p<0.05 rank sum test). (E) Proportions of significantly activated and inhibited D1 and D2 neurons on days 1-4 of training (day 4: n=529 D1 neurons,

n=338 D2 neurons).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. D1 neuronal activity for individual odors and mice.

Figure supplement 2. D2 neuronal activity in odor-outcome association task.
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Figure 3. Odor valence and identity coding in individual D1 and D2 olfactory tubercle (OT) neurons develops

with learning. (A) Hypothetical responses to the five task odors in idealized odor valence coding neurons, salience

coding neurons, or odor identity coding neurons. (B) Calculation of valence scores for individual neurons by

comparison of responses to odors of opposite valence to odors of similar valence. (C) Examples of four individual

neurons with high odor identity coding scores and low valence coding scores. (D) Examples of four individual
neurons with high valence coding scores and low identity coding scores. (E) Distributions of odor identity coding
scores in D1 (blue, left) and D2 (pink, middle) neurons across 4 days of training. D1 neuron identity scores decrease

and D2 neuron identity coding scores increase with training days. Right, day 4 distributions of identity scores of D1
and D2 neurons (**p<0.001, rank sum test). (F) Distributions of odor valence coding scores in D1 (blue, left) and D2

(pink, middle) neurons across 4 days of training. D1 neuron valence scores increase with training days. Right, day

Figure 3 continued on next page
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Figure 3 continued

4 distributions of valence scores of D1 and D2 neurons (***p<0.000001, rank sum test). Dotted lines show shuffled
(control) distributions where the the odor-valence pairing has been randomized.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distributions of salience scores for D1 and D2 neurons.

neurons decreased with training (p<0.05 for day 1 vs. 4, rank sum test), while identity scores of D2
neurons trended to increase with training (Figure 3E, left and middle). After training, identity scores
of D2 neurons were significantly higher than those of D1 neurons (Figure 3E, right, p<0.001 rank
sum test), with more D2 neurons exhibiting clear isolated activity in response to an individual odor.
In contrast, odor valence coding scores of D1 neurons significantly increased with training (p<0.0001
for day 1 vs. 4, rank sum test) while those of D2 neurons did not (Figure 3F, left and middle). After
training, odor valence coding scores of D1 neurons were significantly higher than those of D2 neurons
(Figure 3F, right, p<0.000001 rank sum test), and higher than that of null distributions for valence
scores calculated by shuffling odor-valence assignments (dashed lines in Figure 3F). A shuffling proce-
dure was not appropriate for identity scores, since they were calculated by comparing the best odor
response to the next best one without regard to the associated outcome.

D1 OT neurons encode odor valence in the absence of licking response
or outcomes

In the odor-outcome association task, both odors of positive valence were accompanied by licking
responses and water drop delivery, and both odors of negative valence were accompanied by airpuff
delivery. As such, these trial types shared licking responses and unconditioned stimuli that likely
contributed to the shared outcome-related neuronal responses we observed. In order to test whether
activity of OT neurons reflected true valence coding of the odor stimulus, we constructed a probe
session with two distinct training blocks. Block 1 of the session proceeded as previously described.
After this first block, a 2 min break was introduced in which mice received 2 mL of free water droplets
and became sated on water. Block 2 of the imaging was then conducted where mice did not lick in
response to odor presentations and all outcomes (water and airpuff) were omitted (Figure 4A). We
found that mice very rarely exhibited anticipatory licking in response to the rewarded odors in Block
2 (Figure 4B). Mice licked an average of 4.8+0.1 times in odor 5 trials in Block 1 and an average
of 0.2+0.06 times in odor 5 trials in Block 2 (p<0.000001, rank sum test). In the following imaging
data analysis, any Block 2 trials in which mice licked (5% of trials, or ~1 odor 5 trial per session) were
excluded.

In Block 2, in the absence of licking and outcomes, D1 neuronal responses to odors of previously
learned negative valence (Figure 4C, columns 1-2) were still highly similar and responses to odors
of previously learned positive valence were similar (Figure 4C, columns 4-5), as in the full task condi-
tion (Figure 2A). The Euclidean distance between D1 population activities in response to odor pairs
of opposite valence was 68% greater than between odor pairs of same valence. Principal compo-
nents of neuronal activity and cosine similarity measures further confirmed maintenance of strong
valence representation in D1 neurons in Block 2 (Figure 4D-E). However, valence representation was
no longer present in the D2 neuronal population in Block 2 (Figure 4E, Figure 4—figure supplement
1), with the population activity for odor pairs of same valence only 12% greater in Euclidean distance
(compared to 68% for D1 neurons) than for odor pairs of opposite valence.

Individual neuron valence coding scores of D1 neurons decreased significantly in Block 2 as
compared to the full task condition (Figure 4F, rank sum test p<0.0001) indicating that the presence
of the licking response, the water and airpuff outcomes, as well as the motivated thirsty state in the
mouse contributed significantly to the odor-outcome-related activity of the D1 neurons. However,
the mean of the distribution of the D1 valence scores in Block 2 remained above zero (0.18+0.02;
p=2.815Te-13, Wilcoxon signed rank test), with many D1 neurons maintaining strong valence repre-
sentation. This valence score distribution for D1 neurons in Block 2 was significantly different from a
control, shuffled distribution (Figure 4F; p=2.1025e-12, rank sum test). D1 neurons that maintained
valence coding in the absence of licking and outcome were not distinguished by their relation to
licking vigor in Block 2 (Figure 4—figure supplement 2A). Odor valence scores of D2 neurons
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Figure 4. D1 neuronal valence coding is robustly preserved in the absence of licking response and absence

of outcomes. (A) Probe session structure. In Block 2 mice are sated with water, rarely exhibiting licking, and all
outcomes are omitted. (B) Number of anticipatory licks in response to five-odor types in Blocks 1 and 2 (n=12 mice,
16 trials each odor type in each block). Rare trials with non-zero anticipatory licks in Block 2 were omitted from
following neuronal analysis. (C) Activity of activated (top) and inhibited (bottom) D1 neurons in response to five-
odor types in Block 2. Neurons are grouped by preferred stimulus, arrows on right indicate boundaries between
groups. Black vertical lines indicate odor onset. No outcome was delivered. (D) 3D D1 neuronal population
trajectories in Blocks 1 (solid lines) and 2 (dashed lines) in five trial types. (E) Cosine similarity between D1 and D2
neuronal activity averages in Blocks 1 and 2 for same valence and opposite valence odors (five neuronal subgroups
as in C with pairwise comparisons, *p<0.05 rank sum test). (F) Distributions of D1 (left) and D2 (right) neuron
valence scores in blocks 1 and 2 (n=294 D1 and 177 D2 neurons, **p<0.0001, paired t-test). Dotted lines show
shuffled (control) distributions where the odor-valence pairing has been randomized. (G) Distributions of D1 and

D2 neuron identity scores. Same neurons as in panel F.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. D2 neuronal activity in sated Block 2 with no licking and no water/airpuff outcomes.

Figure 4 continued on next page
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Figure 4 continued
Figure supplement 2. Further evidence for valence coding by D1 neurons in Block 2.

Figure supplement 3. Neutral odor responses of valence coding neurons.

decreased in the sated condition (Figure 4F, right, p<0.0001 rank sum test), and the mean of the
distribution of valence scores of D2 neurons in Block 2 was no longer significantly different from zero.
Valence scores of D1 neurons were significantly higher than valence scores of D2 neurons in Block 2
(p<0.01 rank sum test). Concurrently, with the omission of licking and outcomes, odor identity coding
scores of both D1 and D2 neurons increased in Block 2 (Figure 4G, p<0.01 rank sum test). Salience
scores calculated for D1 and D2 neurons in both blocks were indistinguishable or lower than shuffle
controls, further supporting lack of salience coding (Figure 4—figure supplement 2B). While most of
the analysis focused on rewarding or aversive odors, we noticed that responses to neutral odors trend
with aversive odor responses in Block 1, but fall intermediate between rewarded and aversive odor
responses in Block 2 Figure 3D, Figure 4—figure supplement 3.

Stimulus valence coding by D1 OT neurons is modality-sensitive

To further interrogate the stimulus valence coding property of OT neurons, the implanted Drd1-Cre
mice (n=6) and Adora2A-Cre mice (n=4), which had been previously trained on the five-odor-outcome
conditioning task, were then trained on a new task in which sound associations were introduced. The
main motivation for these sound-odor association experiments was to determine whether sensory
cues from a different modality known to activate OT neurons (Varga and Wesson, 2013; Wesson
and Wilson, 2010) could become categorized with odor cues for combined valence coding. We have
strong evidence from our earlier study (Millman and Murthy, 2020) that novel rewarded odors recruit
the same OT neurons that respond to familiar rewarded odors, and therefore we wanted to see if
adding a rewarding cue from a different modality will engage the same cells.

A new task was introduced in which two odor-outcome associations and two sound-outcome asso-
ciations were presented. Odors 1 and 5 were paired with strong airpuff and large water reward as
previously, and two sound tones (5 and 12 kHz) were used, also paired with strong airpuff and large
water reward (Figure 5A). These sound stimuli were selected after a pilot behavioral study in a sepa-
rate cohort of mice with no implants, designed to produce similar learning and anticipatory licking
rates as the odor stimuli. After 1 training day with the new sound stimuli, the anticipatory licking
rates of 10 mice in response to the rewarded sound stimulus were similar to that of the previously
learned rewarded odor stimulus (Figure 5B). There was a significant difference between the number
of licks for the rewarded and aversive sounds (p=8.0914e-28, two-sided Wilcoxon rank sum test), and
a significant difference between the number of licks for the rewarded and aversive odors as before
(p=8.2317e-54, two-sided Wilcoxon rank sum test). After 3 days of training on the new odor-sound
associations, a probe session as described previously was conducted, in which mice were sated on
water midway in the session and the odor and sound stimuli were then presented in Block 2 in the
absence of licking or outcomes (Figure 5A).

In the stimulus-only condition in Block 2, we found that the same D1 neuronal populations which
had previously strongly maintained similar activity patterns in response to odors of similar valence
(Figure 4C) did not do so for odors and sounds of identical valence (Figure 5C). In the full-task condi-
tion when licking and outcomes (water or airpuff) were present, response similarity remained during
rewarding and aversive trials (Figure 5I, Figure 5—figure supplement 1), but this similarity was lost
in the stimulus-only condition. Only 5% greater Euclidean distance remained between D1 population
activity in response to odor and sound of opposite valence as compared to odor and sound of same
valence, unlike the 68% difference found in Block 2 of the five-odor task. Interestingly, although 9.2%
of all D1 neurons (and 9% of D2 neurons) were significantly activated during at least one of the sound
trial types in Block 2, these neurons were largely non-overlapping with those which responded to the
odor stimuli (Figure 5D). We then directly compared the activity of neurons which were responsive to
odors 1 and 5 in response to the matched valence odor stimuli (odors 2 and 4, in odor-odor task) and
the matched valence sound stimuli (sounds 1 and 2, in odor-sound task). We found that aversive odor
1 responsive neurons became highly activated when aversive odor 2 was presented in Block 2 of the
odor-odor task, but this was not the case when sound tone 1 was presented in the odor-sound task
(Figure 5E, orange, p<0.000001 rank sum test for difference between odor-odor and odor-sound).
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Figure 5. Odors and sound tones associated with identical aversive and rewarding outcomes activate different

D1 neuronal subpopulations in the olfactory tubercle (OT). (A) Odor-sound association task structure. Three days
of odor-sound training beginning at the end of the prior five-odor task training were conducted. Odors 1 and

5 associated with the strongest aversive and rewarding outcomes from previously learned five-odor task were
preserved and two sound tones (5 and 12 kHz) were introduced with matching outcomes. Sound tone-outcome
assignments were counterbalanced across mice. On day 4, a probe session was conducted as previously in which
mice were sated prior to the second block. In the second block, mice did not exhibit licking and all outcomes
were omitted. (B) Anticipatory licking of mice across three training days. By day 2, mice exhibit similar levels of
anticipatory licking in response to the rewarded sound tone as to the rewarded odor (n=10 mice). (C) D1 neuronal
population activity in Block 2 of day 4, in response to the learned odors and sound tones, and in the absence of
licking, airpuffs, or water delivery. Neurons are grouped by preferred stimulus, arrows on right indicate boundaries
between groups. Unlike in Figure 4C, distinct sets of D1 neurons are activated in response to odors and sound
tones associated with identical outcomes. (D) Overlap in neurons responding to stimuli predicting similar aversive
(orange) and rewarding (green) outcomes in the sated condition in the odor-odor task (top) and odor-sound task
(bottom). Top orange, numbers of neurons in Block 2 of the odor-odor task that were activated in response to
either aversive odor 1, aversive odor 2, or both of them (overlap), with % overlap indicated below. Top green, same
for rewarding odors 5 and 4. Bottom, same for Block 2 of the odor-sound task (sounds in dashed lines). (E) Orange,
mean activity of odor 1 activated neurons to the corresponding matched valence odor stimulus in Block 2 of

Figure 5 continued on next page
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Figure 5 continued

the odor-odor (OO) task and matched valence sound stimulus in Block 2 of the odor-sound (OS) task (n=50 and
101 neurons). Green, same for odor 5 responsive neurons (n=100 and 134). (F) Distributions of valence scores

of D1 neurons in the odor-odor task and odor-sound task in the full task condition with licking and outcomes.
Shuffle control distributions are also shown as lines. (G) Same for stimulus-only condition in Block 2. (H) Principal
components of D1 neuronal population activity in Blocks 1 and 2 in odor-odor task. (I) Same for odor-sound task.
(J) Cosine similarity in the neuronal trajectories of stimulus responsive neuronal groups in the odor-odor task as
compared to the odor-sound task in same valence vs. opposite valence stimulus pairs (four neuronal subgroups as
in C with pairwise comparisons, *p<0.05 rank sum test).

The online version of this article includes the following figure supplement(s) for figure 5:
Figure supplement 1. D1 neuronal activity in full odor-sound task, including licking and water/airpuff outcomes.
Figure supplement 2. D2 neuronal activity in full odor-sound task, including licking and water/airpuff outcomes.

Figure supplement 3. D2 neuronal activity in sated Block 2 of odor-sound task with no licking and no water/airpuff
outcomes.

Similarly, rewarding odor 5 responsive neurons became highly activated when rewarding odor 4 was
presented in Block 2 of the odor-odor task, but this was not the case when rewarding sound tone 2 was
presented (Figure 5E, green, p<0.000001 rank sum test). We also calculated valence scores for these
neurons in the odor-odor task and the odor-sound task. In the standard task condition with licking
and outcomes (Figure 5F), as well as in the sated condition with no licking or outcomes (Block 2,
Figure 5G), the valence scores of D1 neurons in the odor-sound task were significantly lower than the
valence scores of the neurons in the odor-odor task (p<0.0001, rank sum test). This occurred despite
the presence of similar levels of anticipatory licking in response to the rewarded sound tone, and even
though the odor- and sound-related outcomes in the odor-sound task were identically matched while
those in the odor-odor task were not.

Finally, we compared the principal components of D1 neuronal population activity in response
to the five odors in Blocks 1 and 2 in the odor-odor task and activity in response to the odor-sound
stimuli in Blocks 1 and 2 in the odor-sound task. Principal components of D1 neuronal populations
were very similar in odors predicting similar outcomes in the typical task condition (Figure 5H, top)
and the sated condition with no licking or outcomes (Figure 5H, bottom). However, there was no such
clear similarity of D1 neuronal population principal components in response to odors and sound tones
predicting identical outcomes (Figure 5I), suggesting distinct neuronal activity trajectories in response
to each of the four stimuli used in the odor-sound task. Measurement of the cosine similarity in the two
conditions confirmed this interpretation (Figure 5J). D2 neurons in Block 2 of the odor-sound task did
not display significant valence coding (Figure 5—figure supplements 2 and 3), which is not surprising
given the lack of valence coding in Block 2 of the five-odor task (Figure 4G).

Discussion

The results of these experiments offer key insights into the function of OT neuronal circuitry during
odor association learning. We find some surprising similarities and some key differences in the
neuronal responsivity of D1- and D2-type OT neurons, in the first single neuron imaging experiments
of specific neuronal subtypes in the OT. We found that D1 neuronal populations clearly responded to
both positive and negative odor valence. This is the first demonstration of bidirectional odor valence
coding by OT neurons, as no previous real-time recordings of OT neurons in response to aversive
valence odors have been reported. We therefore can conclude that the OT is likely to be involved in
learning about both positive and negative odor associations, rather than the alternative possibilities
that the OT is only involved in learning rewarded odor associations, or that it encodes odor salience
rather than signed odor valence. We note that a higher proportion of neurons was active in response
to the rewarded odors than the aversive odors; however, this may be an effect of possible high value
of the water reward outcome in water restricted mice as compared to the aversiveness of a relatively
harmless airpuff to the nose. Surprisingly, similar proportions of D1 and D2 neurons responded to
the five task odors, challenging our initial hypothesis that D2 neurons may respond more strongly
to negatively reinforced odors, based on immediate early gene expression results (Murata et al.,
2015; Murata et al., 2019). This suggests that models of dopamine acting to potentiate responses
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of D1R expressing neurons and de-potentiate responses of D2R expressing neurons or dopamine
dips potentiating D2R expressing neurons (Bamford et al., 2018; lino et al., 2020, Surmeier et al.,
2007, Yagishita et al., 2014) are not sufficient to account for the neuronal activity we observed, in
accordance with a more complex interplay between dopamine and the two striatal neuronal types (de
Jong et al., 2019; Kutlu et al., 2021). Other inputs to D1- and D2-type neurons in the OT, including
strong inputs from piriform cortex (White et al., 2019), could also create differentiated activity in
these neurons.

We then addressed a long-standing question about the factors driving the responses of OT activity
in odor-outcome behavioral paradigms. In previous OT recording experiments, go/no-go tasks were
used where licking in response to the rewarded odors was required. In our classical conditioning task,
mice similarly exhibited anticipatory licking at the onset of the rewarded odors, although the water
delivery was not contingent on this response. In all of these conditions, the odor presentation itself
was in every case coupled with the motor licking action of the mouse. Thus, it was unclear whether
the neuronal activity recorded occurred as a result of the odor stimulus or the licking response. Previ-
ously, it was reported that the onset of the recorded neuronal responses preceded the onset of the
licking action by ~200 ms (Gadziola et al., 2015; Millman and Murthy, 2020), however, this time lag
is well within the time range typically seen in motor preparatory neuronal activity (Svoboda and Li,
2018, Tanaka et al., 2021) and could still be linked to the licking action or its preparation. To address
this confound, we sated the mice on water and omitted the outcomes associated with the odors. We
observed that in 95% of the trials in this condition, mice exhibited zero licks and we analyzed neuronal
activity from only these trials. We observed that D1 OT neurons continued to respond to the learned
odors and continued to strongly differentiate odor valence in the absence of licking or outcomes. This
finding indicates that the critical sensory transformation step of integrating odor identity informa-
tion and outcome information takes place in the OT D1 neurons, and that the odor-outcome-related
activity seen in our recordings and previous recordings are not the result of unintended correlations
with movement. This is especially notable given the low motivational state of the sated mouse in
this experimental condition, suggesting that D1 OT neurons, at least temporarily, maintain odor
valence memory even in conditions when the outcomes associated with the learned odors become
less consequential. It should be noted, however, that in the condition where licking and water and
airpuff delivery were present, the odor-outcome representation in D1 and D2 neurons was enhanced
as compared to the stimulus-only sated condition. This indicates enhanced OT engagement during
conditions in which the mice were motivated and behaving, consistent with other reports of increased
neuronal activity modulation in sensory regions in attentive behaving mice as compared to passive
stimulus presentation conditions (Busse et al., 2017; Carlson et al., 2018; Pakan et al., 2018).

We also note that D1 neurons are heterogeneous in terms of their valence coding, and a sizable
fraction loses its valence coding in the absence of licking and outcome (Block 2). We did not find
distinct populations of neurons responding to licking and valence separately (Figure 4—figure supple-
ment 2A), indicating that licking and valence responsivity are intertwined factors. The heterogeneity
of D1 responses could arise from natural stochasticity in cellular plasticity mechanisms involved in
the generation of the firing patterns such that not all neurons (and connections) are modified in the
desired direction. Our observed heterogeneity could, in part, be due to unintended labeling of addi-
tional neuronal types. It is unlikely that we imaged ventral pallidal neurons since we positioned our
GRIN lens as ventrally as possible, confirmed the location histologically excluding mice in which we
suspected more dorsal localization, and since expression of Drd1 and A2A is very low in the ventral
pallidum (Figure 1—figure supplement 4A, Allen Brain Atlas). As discussed in the Results (Figure 1—
figure supplement 4), it is unlikely that a significant number of neurons from the islands of Calleja
were included in our analysis.

Our findings on the activity of OT D2 neurons provide an interesting contrast to the robust valence
coding property of D1 neurons. While D2 neuronal populations differentiated between rewarded and
aversive outcomes in the task condition involving licking and outcomes, this representation was signifi-
cantly weaker than that of D1 neurons and disappeared in the stimulus-only condition when licking
and outcomes were omitted. This result contrasts with photometry data in which reward contingency
information was not observed in average D2 population activity in a go/no-go task (Gadziola et al.,
2020), suggesting it is possible to differentiate rewarded trials in non-averaged D2 neuronal activity
in a condition when the licking response is present. However, our data does demonstrate that reward
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contingency information is more readily represented by D1 neurons than D2 neurons. Individual D2
neurons were much more likely to respond to an individual odor out of the five task odors and exhibit
little responsivity to any of the other four odors, suggesting odor-identity rather than odor-valence
responsivity. Increased training resulted in increases in the valence-coding scores of D1 neurons and
decreases in their odor-identity coding scores, while the opposite pattern was observed in D2 neurons,
with increased odor-identity coding scores with training.

How D1 and D2 neuronal representations of learned odors diverge based on inputs to these
neurons and the effect of dopamine onto them, and how they then subsequently shape behavior as
they influence downstream targets are both important areas to investigate. Cre expressing neurons in
the dorsal striatum from the Drd1-Cre and Adora2A-Cre mouse lines used in our imaging experiments
have been previously shown to project via the distinct direct and indirect striatal output pathways
(Gerfen et al., 2013), and as such have opposing overall effects on thalamus and cortex, potenti-
ating behavioral output and inhibiting it, respectively. There is much less known about the differen-
tial projections of D1 and D2 neurons in the OT (Heimer et al., 1987, Zhou et al., 2003) and their
function (Gadziola et al., 2020; Murata et al., 2015; Murata et al., 2019). Given the relatively weak
odor-outcome representation by OT D2 neurons, the question also remains whether these neurons
play a significant role in odor-outcome association learning, or whether D1 OT neurons predominantly
contribute to this function.

Informed by previous studies showing that sound cues can also activate OT neurons (Varga and
Wesson, 2013; Wesson and Wilson, 2010), we asked whether individual neurons respond similarly to
odor and sound cues that predict the same reward or airpuff, which would point to multimodal inte-
gration within the OT to form a unified valence representation. Such a result might also be expected
if neuronal responses were closely related to licking response and outcome, since the odor and sound
cue lead to the same learned motor behavior. Consistent with previous results, we found that 24%
of D1 neurons and 14% of D2 neurons were activated in response to at least one of the sound tones
in the full task condition with licking and outcomes. However, unlike the large overlap and similarity
between neuronal activity in response to different odors predicting similar outcomes, we found little
overlap between neurons responding to odors and sounds predicting identical outcomes. This finding
points to two conclusions.

First, corroborating our previous result, we can conclude that the odor valence-related OT activity
was not primarily a result of the licking response of the mouse. We demonstrate that behaviorally, the
anticipatory licking rates of the mice in response to the rewarded odor stimulus and the rewarded
sound stimulus are similarly high after training, yet stimulus-outcome representation in the OT during
the odor-sound task is minimal in the period prior to outcome delivery even in the presence of
matched anticipatory licking rates. Second, we can conclude that stimulus valence representation by
D1 OT neurons does not automatically generalize to multimodal stimuli. Our previous study (Millman
and Murthy, 2020) demonstrated that introducing novel rewarded odors recruits the same valence
cells that respond to familiar rewarded odors. Our current data indicate that adding a new stimulus
of a different modality does NOT automatically recruit the same reward category cells. Sound-related
responses in OT do occur and supra-additive effects of odor and sound stimuli have been reported
(Wesson and Wilson, 2010). While there were clearly strong neuronal responses to sound tones in our
experiments, our design did not include multiple sound tones for outcomes of the same valence as we
did for odors in the original five-odor task. Therefore, we cannot be sure that a cell responding to a
rewarding tone is simply because of sensory tuning, or because of valence coding. Future studies can
address this important issue, since it will inform us about the possible specialized role of limbic brain
regions such as the OT to store emotionally charged odor memories, a property that may be unique
to the sensory modality of olfaction.

An unavoidable consequence of GRIN lens imaging of deep brain regions is tissue damage, but we
are confident that our key conclusions are not affected by this issue. We made concerted efforts to
minimize the damage caused by the implanted cannula. First, the cannula was constructed from highly
biocompatible and thin-walled polyamide tubing and quartz floor which have previously been shown
to minimize glial scar tissue (Bocarsly et al., 2015). Second, 2 mm of the cortex were removed by
suction prior to the virus injection and cannula implantation to minimize pressure in the brain. Finally,
the mice were allowed to recover for at least 1 month prior to the onset of behavioral training. After
the extensive recovery period, mice learned the association tasks rapidly. The anticipatory licking of
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the mice with no GRIN lens implant is similar to that of the implanted mice (Figure 1—figure supple-
ment 5), suggesting that the implanted mice are not impaired in their ability to learn the stimulus-
outcome associations.

The main comparisons we make in our study are likely not a function of the damage caused by
the lens. First, the differences in the valence coding of D1 and D2 neurons are unlikely to be a result
of lens damage, since there is no reason to suspect that damage caused by the lens will differentially
affect D1 and D2 neuronal activity in the OT. D1- and D2-type neurons in the OT and the striatum
typically receive inputs from similar upstream structures and their inputs were not generally altered by
the lens damage. Second, there is no reason to suspect that the robust valence coding in the absence
of the licking and outcomes by D1 neurons could be a result of the lens damage. Third, there is no
particular reason to suggest that the distinction between the odor and sound responsive neurons
in the last set of experiments would be a result of the damage caused by the lens as the possible
auditory cortical projections to the OT arrived from the posterior direction. Finally, the nature of the
valence-related responses we observe in the OT are similar to those observed by others using tetrode
recordings (Gadziola et al., 2015; Millman and Murthy, 2020) in which there was presumably less
damage to the striatum.

In summary, we find that D1 OT neurons are more likely to encode learned odor valence than
D2 neurons, and conversely less likely to encode odor identity. We also demonstrate, for the first
time, that even when the licking response to rewarded odors is eliminated, OT D1 neurons continue
to robustly encode odor valence suggesting that this stimulus to valence transformation by the OT
precedes the motor action itself. These results also suggest that OT odor valence representation
could inform downstream brain regions of the value of odor stimuli. Finally, we find that stimulus
valence representation by OT neurons is limited to olfactory stimuli suggesting a specialized role of
the OT in assigning emotional tags to odors based on previous experience. Further investigation into
the relative contributions of D1 and D2 OT neurons to odor association learning and the neural mech-
anisms that result in the differential responses of these neuronal types is required. These neuronal
imaging results suggest a specialized role for the OT in odor valence memory, and further studies
can be conducted to assess the causal contribution of the OT to the hypothesized unique emotional
qualities of olfactory memory.

Materials and methods

Animals

Adult male and female heterozygous B6.FVB(Cg)-Tg(Drd1-Cre)EY262Gsat/Mmucd and B6.FVB(Cg)-
Tg(Adora2A-Cre)KG139Gsat/Mmucd (MMRRC) mice were 2-6 months of age at the start of the exper-
iments. Due to the highly consistent colocalization of A2A receptors and D2 dopamine receptors in
the striatum, no colocalization of A2A receptors with D1 dopamine receptors (Gerfen and Surmeier,
2011; Svenningsson et al., 1998), and previously established use of Adora2A-Cre mice for indirect
pathway specific manipulation (Cui et al., 2013), we proceeded with the use of Adora2A-Cre mice to
image D2-type neurons. All experiments were conducted with approved protocols and in accordance
with Harvard University Animal Care Guidelines.

Cannula assembly

Custom-designed cannula were assembled in house. 6.2 mm length 1.1 mm diameter ultra-thin wall
biocompatible polyimide tubing (MicroLumen) which was demonstrated to cause minimal inflamma-
tory response in the brain (Bocarsly et al., 2015) was used for the walls of the cannula. 150 pm
thickness quartz coverslips (Electron Microscopy Sciences) were cut to 1 mm diameter disks in a laser
cutter and used as the floor of the cannula. Cut quartz disks were held with the assistance of vacuum
under the view of a surgical microscope, attached to the polyimide tube with Norland Optical Adhe-
sive NOA 68 (Edmund Optics), and adhesive was cured with UV light source (ThorLabs). Directly prior
to surgical implantation, cannula were inspected and disinfected with the use of the UV light source.

Surgery
Naive mice underwent surgical virus injection, cannula implantation, and head fixation plate implan-
tation, prior to any behavioral training. Mice were anesthetized with an intraperitoneal injection of
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a mixture of xylazine (10 mg/kg) and ketamine (80 mg/kg) and placed in a stereotaxic apparatus. A
1.4 mm craniotomy was performed at 1.5 mm AP, 1.3 mm ML in the right hemisphere. A 22 G needle
was used to suction 2 mm below the brain surface prior to virus injection. A pulled glass micropipette
attached to a nanoinjector (MO-10, Narishige) was used to inject 400 nL of pGP-AAV9-syn-FLEX-
jGCaMP7s-WPRE (Addgene) virus at a depth of 4.8 mm DV at a rate of 100 nL/min. Five minutes after
the injection was completed, the glass pipette was raised out of the brain over the course of another
5 min. The sanitized cannula was then held lightly with a dental paper point inserted into its center
and attached to the stereotaxic arm. The cannula was lowered over the course of 10 min to a depth of
4.9 mm DV. The cannula was secured onto the skull with cyanoacrylate glue and a head fixation plate
was also glued to the skull behind the cannula. Dental cement (MetaBond) was then used to cover
the skull and headplate. The opening of the cannula was covered with a silicone sealant (KwikSil).
Mice were single housed after surgery. After a period of 4 weeks to allow for virus expression and the
reduction of the inflammatory response to the insertion of the cannula, a 1 mm diameter, 3.4 mm long
0.5NA GRIN lens (ThorlLabs) was inserted into the cannula and behavioral training and imaging begun.

Behavioral training

Mice were water restricted to reach 85-90% of their initial body weight and provided approximately
1-1.5 mL water per day in order to maintain desired weight. Mice were habituated to head fixa-
tion and drinking from water spout prior to initial training session. In the pre-training (day 0), mice
were provided large water drops (20 pL), small water drops (10 pL), strong airpuff (10 PSI), and weak
airpuff (5 PSI) in identical trial structure as full five-odor conditioning task, but odors were not used.
Each mouse was then assigned five odor-outcome contingencies with the monomolecular odorants
hexanal, limonene, anisole, eucalyptol, and heptanal. Odors were delivered via a custom-built olfac-
tometer as described previously (Soucy et al., 2009) with a 1.5 L/min flow rate at a concentration of
20% for 1.5 s each. Odor-outcome contingencies were assigned so as to equally or close to equally
counterbalance the odor-outcome contingencies across each cohort of mice. The delay between the
solenoid valve opening (which is denoted as time 0 throughout the manuscript) and the arrival of the
odor at the mouse’s nostrils was measured with a miniPID instrument (Aurora Scientific, Inc).

In days 1-4 of training, each of the five odors and associated outcomes were provided 30 times
with 20 s inter-trial intervals. In 10% of trials (three trials of each trial type), the outcomes were omitted,;
however, this number of trials was not later found to be sufficient for the analysis of neuronal activity.
Trial types were interspersed randomly across the session, with the constraint that equal numbers of
each trial type occurred in the first and second half of each session to ensure equal trial type repre-
sentation for the duration of each imaging session. Licking of the water delivery spout was measured
throughout training and imaging with the use of a capacitance sensing Arduino circuit. Behavioral
events control and recording was conducted with Python with adapted use of the ScopeFoundry plat-
form (http://www.scopefoundry.org/) and National Instruments DAQ hardware.

Prior to Block 2 in the probe session in day 5 of training, 2 mL of free water was provided to the
headfixed mouse over the course of 2 min. Fifteen trials of each trial type were then presented in
identical task structure as in Block 1, however all water and airpuff outcomes were omitted.

Training in the odor-sound task occurred 1-2 days after the completion of the five-odor task
training. Odors 1 and 5 with strong airpuff and large water drop outcomes were preserved, and 5
and 12 kHz sound tones were introduced paired with the same strong airpuff and large water drop
outcomes. As in previous task, 30 trials of each condition were randomly interspersed across session
time. Onset and duration (1.5 s) of the sound stimuli and associated outcomes was identical to that
of the odor stimuli. After 3 days of odor-sound task training, a probe session with two blocks was
conducted as in the original five-odor task.

Two-photon imaging of calcium activity

A custom-built microscope was used for in vivo imaging as described previously (Kapoor et al., 2016;
Petzold et al., 2009). Imaging was conducted at 5 Hz with an air objective (10x, Leica) at 930 nm
using a Ti:sapphire laser (Chameleon Ultra, Coherent) with a 140 fs pulse width and 80 MHz repeti-
tion rate. Image acquisition, scanning, and stimulus delivery were controlled by custom-written soft-
ware (Kapoor, 2022; deposited in GitHub) in LabVIEW (National Instruments). Prior to two-photon
imaging, the position of the GRIN lens and approximate neuronal imaging plane was determined with
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a camera. The head fixation plate was mounted on an adjustable pitch and roll platform (ThorLabs)
which allowed for manual adjustment of the lens angle to parallel alignment with the objective. The
depth of the imaging plane was adjusted each day to closely match that of the previous imaging days,
capturing the same or highly overlapping neuronal populations across days of training.

Calcium imaging data analysis

Imaging data was motion corrected with Non-Rigid Motion Correction (NoRMCorre) (Pnevmatikakis
and Giovannucci, 2017). The activity of single neurons was then isolated and background subtracted
with the use of CalmAn (Giovannucci et al., 2019) followed by manual refinement. The number of
putative calcium transient events in each neuron was then quantified based on a criterion of activity 3
standard deviations above a temporally proximal baseline lasting longer than 5 frames, and neurons
with less than two recorded transients were not used in the analysis. Due to baseline fluorescence
fluctuations in single neurons, the activity of each neuron in individual trials was normalized to a 1's
pre-trial baseline to isolate trial event-related fluorescence changes. Due to the 5 Hz imaging rate and
following use of a minimal locally weighed smoothing filter to reduce noise in recordings, in some
cases event-triggered changes in fluorescence may appear to begin in 1-2 frames prior to the event
time.

mean (differences between opposite valence odors)—mean (differences between same valence odors)

Valence Score = - —
maximum response —minimunt resp()nse|

Strongest odor response—second strongest odor response
strongest odor response

Identity Score =

mean (differences between different salience odors)—mean (differences between similar salience odors)
|maximum response—minimum response|

Salience Score =

Odor valence coding scores and odor identity coding scores were computed for neurons which
had significant mean activity deviations of >30% from pre-trial baseline as shown below. Due to the
variability in the neutral odor responses which often tracked closely with either the aversive odors or
the rewarded odors in neurons which clearly differentiated between the rewarded and aversive odors,
the neutral odor responses were not included in the numerator of the valence score formula (but they
could still feature in the denominator if neutral odors caused maximum or minimum response for a
given neuron). A salience score was calculated analogous to the valence score using the formula noted
above. Distributions of odor valence scores and odor identity scores across neuronal types and task
conditions were compared with the non-parametric Wilcoxon rank sum test. We generated null distri-
butions by shuffling the odor-valence pairing. Since the identity scores were calculated by comparing
the best odor response to the next best one, the shuffling procedure does not affect the identity
scores and was not done for those distributions. Matrix difference measures of neuronal population
activity were obtained by taking the Euclidean norm of the difference between population activity in
response to pairs of stimuli used in the task. The mean norm for stimuli pairs of opposite valence was
then compared to the mean norm for stimuli pairs of the same valence. Neuronal population activity
dimensionality reduction and trajectory analysis was conducted with the use of the DataHigh toolbox
(Cowley et al., 2013) with all D1 and D2 neurons collected in the dataset and trial types used as input
conditions.

Histological confirmation of imaging site

After completion of imaging experiments, mice were transcardially perfused, and the brains were
removed from the skull. Coronal floating sections were cut using a vibratome (Leica VT1000S). Brain
sections were imaged using the Zeiss Axio Scan slide scanner at the Harvard Center for Biological
Imaging to visualize the location of GCaMP expression and the location of cannula tip. Brain section
images were matched and overlaid with the Paxinos and Franklin Mouse Brain Atlas cross-sections
to identify imaging location. Six of eleven implanted Drd1-Cre mice had confirmed OT imaging loca-
tions, while in others the tip of the cannula was located in ventral pallidum or nucleus accumbens.
Eight of eleven implanted Adora2A-Cre mice had confirmed OT imaging locations, but only six of
eight produced satisfactory imaging results. Only mice with confirmed OT imaging locations and
successful imaging results were used in later analysis.
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Statistical analysis

We primarily used the non-parametric Wilcoxon rank sum test (referred to simply as rank sum test in
the main text) and Fisher’s exact test, since we could not assume normally distributed data in most
cases. Comparisons involving t-tests were paired and two-tailed.
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