Computational Neuroscience Track worksheet
(14 courses required or 15 for Honors)

Math and Statistics (3 courses)
- 1. Multivariable Calculus: Math 19a*, Math 21a, 22b, 23b, 25b, Applied Math 21a, or 22b
- 2. Linear Algebra: Math 18/19b*, 21b, 22a, 23a, 25a, Applied Math 21b, or 22a
- 3. Statistics 110

* Not recommended for students planning to take additional Math/Applied Math courses (or Modeling/Analysis electives with higher math pre-reqs).

Computer Science (2 courses)
- 4. CS 32, 50, or Applied Math 10
- 5. CS 51 or 61

Foundational Biology (2 courses)
- 6. Any one of the following (courses with labs are underlined):

<table>
<thead>
<tr>
<th>LS 1a or LPSA</th>
<th>Chemistry, Molecular/Cell Bio</th>
<th>LS 1b</th>
<th>Genetics, Genomics, Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS 2</td>
<td>Evolutionary Human Physiology and Anatomy</td>
<td>HEB 1420</td>
<td>Human Anatomy</td>
</tr>
<tr>
<td>MCB 60</td>
<td>Cell Biology, MCB 63 Biochemistry</td>
<td>MCB 64</td>
<td>Cell Biology,</td>
</tr>
<tr>
<td>MCB 65</td>
<td>Physical Biochemistry, MCB 68 Cell Bio & Microscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEB 50</td>
<td>Population Genetics, OEB 53 Evolutionary Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCRB 50</td>
<td>Building a Body</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 7. One approved 100-level HEB, MCB, OEB, or SCR course (or any second course from the box above)

Neurobiology (5 courses)
- 8. Neuro 80: Neurobiology of Behavior
- 9. Neuro 105, Neuro 115, Neuro 120 *(Neuro 120 strongly recommended)*
- 10. Additional Quantitative Elective:

APMTH 226: Neural Computation	BME 130 Neural Control of Movement
BME 131: Neuroengineering	BME 129: Intro to Bioelectronics
Neuro 105 Systems Neuroscience	Neuro 115 Cellular Basis of Neuronal Function
Neuro 120 Introductory Computational Neuroscience	Neuro 130 Visual Recognition
MCB 131 Computational Neuroscience	Neuro 140 Artificial and Biological Intelligence,
Neuro 141 Physics of Sensory Systems	Psych 1401 Cognitive Computational Neuro
Psych 1406 Biological and Artificial Visual Systems	Psych 1451 Debugging the brain

Modeling and Analysis (2 courses) Any two courses from our approved list:
https://www.mcb.harvard.edu/undergraduate/neuroscience/neuro-courses/?course-button=compneurotrack

- 13. ________________________
- 14. ________________________

Honors – optional

- 15. Neuro 91 Laboratory Research or LS100 Experimental Research or completion of a senior thesis
Computational Track Electives: The following list of classes count as modeling/analysis electives for students on the Computational Neuroscience Track. Additional courses may be petitioned for approval.

APM 50: Intro to Applied Mathematics
APM 104: Series Expansions and Complex Analysis
APM 105: Ordinary and Partial Differential Equations
APM 107: Graph Theory and Combinatorics
APM 108: Nonlinear Dynamical Systems
APM 111: Intro Scientific Computing
APM 120: Applied Linear Algebra and Big Data
APM 232: Learning, estimation and control of Dynamical Systems

BME 110: Physiological Systems Analysis

CS 108: Intelligent Systems: Design and Ethical Challenges
CS 109: Intro to Data Science
CS 121: Intro to Theory of Computation
CS 124: Data Structures and Algorithms
CS 143: Computer Networks
CS 181: Machine Learning
CS 182: Artificial Intelligence
CS 187: Computational Linguistics

ENG-SCI/APM 115: Mathematical Modeling
ENG-SCI/APM 121: Intro to Optimization
ENG-SCI 155: Systems and Control
ENG-SCI 157: Biological Signal Processing

MCB 111: Mathematics in Biology
MCB 112: Biological Data Analysis
MCB 198: Advanced Math Techniques for Modern Biology
MCB 199: Statistical Thermodynamics and Quantitative Biology

Psych 2030: Bayesian Data Analysis

Stat 108: Computing Software
Stat 111: Theoretical Inference
Stat 115: Intro Computational Biology
Stat 117: Data Analysis in Modern Biostatistics
Stat 120: Introduction to Bayesian Inference and Applications
Stat 121: Data Science
Stat 131: Time Series
Stat 139: Linear Models
Stat 149: Generalized Linear Models
Stat 171: Stochastic Processes
Stat/CS 184: Introduction to Reinforcement Learning
Stat 185: Introduction to Dimension Reduction
Stat 195: Statistical Machine Learning
Stat 220: Bayesian Data Analysis