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Connectomics provides nanometer-resolution, synapse-level maps of neural
circuits tounderstand brain activity and behavior. However, few researchers
have access to the high-throughput electron microscopes necessary to
generate enough data for whole-brain or even whole-circuit reconstruction.
Todate, machine learning methods have been used after the collection of
images by electron microscopy (EM) to accelerate and improve neuronal
segmentation, synapse reconstruction and other data analysis. With the
continual computational improvements in processing EM images, acquiring
EMimages willbecome the rate-limiting step in automated connectomics.
Here, in order to speed up EM imaging, we integrate machine learning into
real-time image acquisition in a single-beam scanning electron microscope.
ThisSmartEM approach allows an electron microscope to perform data-aware
imaging of specimens. SmartEM saves time by allocating the properimaging
time for each region of interest—first scanning all pixels rapidly and then
rescanning more slowly only the small subareas where a higher quality signal is
required. We demonstrate that SmartEM achieves up to an -7-fold acceleration
ofimage acquisition time for connectomic samples using acommercial
single-beam SEM in samples from nematodes, mice and humanbrain. We
apply this fastimaging method to reconstruct a portion of mouse cerebral
cortex withan accuracy comparable to traditional electron microscopy.

Serial-section electron microscopy is widely used to reconstruct
circuit wiring diagrams in entire brains of small animals like Cae-
norhabditis elegans, Drosophila and zebrafish'™ and brain regions
in mammals® ™. Comparing the growing numbers of connectomes
of animals with different genetic backgrounds, life experiences
and diseases will illuminate the anatomical nature of learning, mem-
ory and developmental plasticity, the nature of brain evolution and
the kinds of anatomical abnormalities that cause neuropathology
and disease'* ™,

To achieve wide-scale deployment for comparative connectomics,
data acquisition and analysis pipelines need to become more widely
available”. At present, connectome datasets are mostly acquired by
the few laboratories and institutions equipped with specialized and
expensive high-throughputelectron microscopes such as the Transmis-
sion Electron Microscopy CameraArray 2, GridTape or the Zeiss 61- or
91-beam scanning electron microscope (SEM)'¢*$%,

Until recently, dataset acquisition had not been a limiting
factor in connectomics®®. Amore substantial bottleneck had been data

A full list of affiliations appears at the end of the paper.
shanir@csail.mit.edu

e-mail: yaron.mr@gmail.com; jeff@mcb.harvard.edu; samuel@physics.harvard.edu;

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02929-3
http://orcid.org/0000-0002-1946-8012
http://orcid.org/0009-0001-0951-5030
http://orcid.org/0000-0002-9542-2913
http://orcid.org/0000-0001-5108-4038
http://orcid.org/0000-0002-9677-6932
http://orcid.org/0000-0003-2450-1718
http://orcid.org/0009-0008-4812-0120
http://orcid.org/0009-0002-4561-1203
http://orcid.org/0000-0002-1500-2143
http://orcid.org/0000-0002-3620-2582
http://orcid.org/0000-0002-0208-3212
http://orcid.org/0000-0002-1672-8720
http://orcid.org/0009-0006-1111-1349
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02929-3&domain=pdf
mailto:yaron.mr@gmail.com
mailto:jeff@mcb.harvard.edu
mailto:samuel@physics.harvard.edu
mailto:shanir@csail.mit.edu

Article

https://doi.org/10.1038/s41592-025-02929-3

analysis: segmenting serial-section electron micrographs to recon-
struct the shape and distribution of nerve fibers, identify synapses
and map circuit connectivity. The most substantial bottleneck had
been manual human proofreading’. However, recent improvements
inmachine learning (ML) and image analysis® ?® have sped data analy-
sis and reduced the need for human proofreading, creating a need
for fasterimage acquisition. The field needs more electron microscopes
todeliver datasets as fast as they can now be analyzed. One way to meet
this need is to enable widely available electron microscopes, such as
more affordable single-beam SEMs, to collect connectomic datasets.

On asingle-beam SEM, acquisition speed is dictated by the dwell
time that the electron beam spends on each pixel. For connectomics,
thisistypically >1,000 ns per pixel to ensure high-contrast tissue imag-
ing. In comparison, the time spent moving the beam between pixels
is negligible, as modern SEMs use electrostatic scan generators for
rapid beam deflection?*°. To accelerate an SEM for connectomics, one
must therefore reduce the total dwell time without losing information
essential for determining the wiring diagram.

The salient measure of image accuracy for connectomics is neu-
ronal segmentation: being able to correctly identify each neuron’s
border (membrane boundary and extracellular space) and correctly
identify each synapse. In standard SEM, a long, uniform dwell time is
used to achieve the high signal-to-noise per pixel needed for accurate
segmentation. This creates afundamental trade-off: rapid imaging can
miss critical information. Although post-acquisition methods such as
denoising or upsampling can improve images®-*?, they are limited by
the original information content and cannot unambiguously create
datathat was not firstacquired.

Our solution to the problem of missing information in a rapidly
acquired image is to recover information during real-time micro-
scope operation. To do this, we developed SmartEM, a pipeline that
uses an efficient machine learning algorithm to identify error-prone
or high-salience regions (such as synapses) from an initial, rapidly
acquiredimage and thenimmediately rescans those regions atalonger
dwell time. The SmartEM pipeline is effective in any context where
images exhibit high spatial heterogeneity in segmentation accuracy
as a function of imaging time: a fundamental characteristic of brain
images where nerve fibers and synapses can vary in size and density
from region to region. By creating a composite image, using longer
dwelltimes only where needed, SmartEM achieves the accuracy of auni-
formlong-dwell-time acquisition with nearly the speed of ashort-dwell-
time scan. Our experiments yielded between ~-5-7x speedup on
three different connectomic datasets using two widely available SEMs,
demonstrating a method to accelerate imaging not only in biology
but also in material sciences and electronic circuit fabrication.

Results

Suitability of adaptive dwell times for connectomics

To establish the rationale for our connectomics pipeline by SEM—auto-
matically applying short dwell times to most areas that are ‘easy’ to
segment and long dwell times to fewer areas that are ‘hard’ to segment—
we quantitatively tested how spatial heterogeneity in representative
mammalian brain images affects segmentation accuracy with differ-
ent dwell times. To perform these tests, we used a recent high-quality
sample comprising 94 sections of mouse visual cortex*. We reimaged
these 94 sections at 4-nm-per-pixel resolution using a Verios 5HP SEM
from Thermo Fisher Scientific at a range of fixed dwell times from
25t01,200 ns per pixel.

We note that when these images were originally acquired in a
previous study using multibeam SEM, the dwell time was 800 ns per
pixel. This dwell time was determined by an expert operator and is
closetothe 800-1,000 ns per pixel needed for maximal segmentation
accuracy for this dataset (Fig.1a,b).

Our segmentation algorithm—mapping EMimages to border pre-
dictions (EM2B) followed by astandard watershed transform—provided

anobjective assessment of segmentation accuracy of images collected
with different dwell times. We adapted EM2B to SEM images taken with
different dwell times. We automatically segmented 256 randomly
selected 2,048-pixel x 1,768-pixel regions taken from the 94-section
sample imaged at 14 different dwell times. Automatic segmentation
with ultrafast dwell times (25 ns per pixel) produced frequent merge
and split errors compared to automatic segmentation of the same
regions with overly slow dwell times (1,200 ns per pixel; Fig. 1a).

To quantify segmentation accuracy, we calculated the variation
of information (VI)* between each automatically segmented region at
eachshorter dwell time and the segmentation obtained at the longest
dwelltime (Fig.1b). Segmentationaccuracy increased with longer dwell
times and saturated at 800-1,000 ns per pixel, consistent with the
rule-of-thumb practice in choosing the dwell times for connectomics.
At 25 ns per pixel, acquisition speed is 40x faster than at 1,000 ns per
pixel, but with lower segmentation accuracy.

Braintissueistypically heterogeneous, withsomeimage regions
easier and others harder to segment accurately (Fig. 1c,d). Thus, seg-
mentation accuracy varied substantially from region to region. For
slow dwell times (1,000 ns per pixel), segmentation accuracy was
narrowly distributed around small VI, indicating fewer segmentation
errors. For ultrafast dwell times (25 ns per pixel), segmentation accu-
racy was broadly distributed. Some regions exhibited the same low VI
with both ultrafast and slow dwell times (‘easy’-to-segment regions).
In contrast, some regions exhibited drastically higher VI for ultrafast
dwell times than slow dwell times (‘hard’-to-segment regions; Fig. 1c).
For eachregion, we determined the minimum dwell time to reach the
same segmentation accuracy as that produced by the longest dwell
time. We observed abroad distribution of minimum dwell times across
pixel regionsin this mouse cortex sample. Most 2,048-pixel x 1,768-pixel
regions are accurately segmented with dwell times <150 ns per pixel,
but some (-25%) required longer dwell times. Minimum dwell times
exhibited a broad-tailed distribution from 50 to 1,200 ns per
pixel (Fig.1d).

Challenges inimplementing SmartEM

We sought a SmartEM pipeline that could both identify and adapt
to the spatial heterogeneity in the segmentation accuracy of brain
tissue at various dwell times. Implementing such a pipeline on an
SEM poses several challenges. First, the SEM needs to automatically
identify regionslikely to produce segmentation errors whenacquired
rapidly. Next, the SEM needs to slowly rescan pixel neighborhoods
withinand around these ‘error-prone’ regions to improve segmentation.
Finally, the pipeline needs to accurately segment composite images
built from the initial rapidly acquired images fused with rescanned
error-prone regions. Below, we describe the solutions to these chal-
lenges that form our SmartEM pipeline.

To identify error-prone regions in rapidly acquired images, we
developed a ML algorithm to run on the microscope’s support com-
puter. To take a particular example (Fig. 2a), ashort-dwell-time scanned
image produced a segmentation merge error that would have been
avoided with a longer-dwell-time scan of the same tile. By use of a
neural network (ERRNET; see below), it was possible to identify the
error-causing location in the rapidly acquired image and specify the
error-proneregion to berescanned that would remedy segmentation
errors. This region includes the poorly defined cell membranes caus-
ing the merge error. ERRNET can operate in real-time within the SEM
computer when equipped with acommodity GPU. This network runs
faster than the short scanimage acquisition (<100 ns per pixel) and can
be further sped up by parallelization with multiple GPUs.

Tousethe prediction of error-proneregions during real-time SEM
operation, we modified the scanning procedure of the microscope to
rescanerror-proneregions atlong dwell times right after the shortscan.
Inaddition torescanning error-proneregions, neural networks canbe
trained for data-aware rescan of additional regions of interest, such as
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Fig.1| The effect of the beam’s dwell time on the ability to segment the EM
into neuronal elements. a, Scanning the same EM tile with different dwell
times. Short-dwell-time scans result in segmentation errors (red squares) that
areresolved by longer scans (green squares). b, The segmentation quality of the
sameimages used ina are represented by x markers, alongside the distribution
of segmentation qualities of 256 images (scatter and boxes) for 13 dwell times,
from25t01,000 ns per pixel, calculated relative to a reference image taken at
1,200 ns per pixel. Segmentation error is quantified by VI; y axis). Box plots show
the median (center line); 25th-75th percentiles (box) and whiskers extending

to the most extreme points within1.5 x interquartile range. ¢, Comparison of
segmentation error (VI) distributions for slow (1,000 ns) and ultrafast (25 ns)
dwell times. Two example images, both taken at 25 ns per pixel, are shown,
corresponding to a high-error case (top) and alow-error case (bottom) from

the wide distribution of the ultrafast scan. d, Distribution of the minimum dwell
time required to achieve adequate segmentation quality for 256 differentimage
regions. The x axis represents the dwell time in nanoseconds per pixel, and the y
axis represents the proportion of regions that meet the quality threshold at that
specific dwell time.

synaptic clefts for applicationsin connectomics. We show data-aware
rescans where the microscope is guided to retake regions around
synaptic clefts that are predicted from an initial short scan image of
asection of mammalian cortex (Fig. 2b). SEMs with electrostatic scan
generators are able to conduct efficient and rapid rescans without

wasted timein moving the electronbeam®*°, When ERRNET and rescan
software are seamlessly integrated within SEM computer hardware, the
total time spentacquiring animage is the total number of pixels times
the short initial dwell time plus the total number of rescanned pixels
times their long dwell time.
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Fig.2|Smart microscope challenges. a, ML detecting error-prone regions. An
erroneous segmentation of a rapidly acquired image (25 ns per pixel) with ared
arrow indicating the location of amerge error between two neurons (N1, N2).
Acquiring the same image at a long dwell time of 1,200 ns per pixel enhances the
neuronal boundary (middle). The output of the ERRNET neural network that
was trained to predict segmentation errors from EMis shown on the rightinred
(25 ns per pixel). The yellow outline is awindow around the predicted error to
provide further context needed for downstream correction. b, SEM rescanning

Long scan

Border map

any subregion. The SEM captures any part of an image at different dwell times,
homogeneously at short dwell times (left; 25 ns per pixel), homogeneously at
long dwell times (middle; 3,000 ns per pixel) or homogeneously at short dwell
times with a subregion taken at long dwell times (right; 25and 3,000 ns per pixel).
Here, the yellow outline for the long-dwell-time subregion contains a synaptic
cleft. ¢, ML segmenting multi-dwell-time images. Predicting neuronal borders
from fused EM images using FUSEDEM2B.

Afterimage acquisition, asmart microscopy pipeline generatesa
complete rapidly acquired image and set of rescanned regions of each
sampleacquired atlonger dwelltimes. Composite images are produced
by substituting pixels from rescanned regions into corresponding
locations in the initially rapidly acquired images, resulting in images
with pixels of multiple dwell times. Previous segmentation algorithms
for connectomics have dealt with a single prefixed dwell time?>**>>3*—
these algorithms generalize poorly to homogeneous images taken at

different dwell times or to heterogeneous images composed of regions
taken at different dwell times. The smart microscopy pipeline demands
new algorithms to accurately segment composite images where differ-
entregions are obtained at different dwell times.

We developed a data-augmentation training procedure technique
for a neural network with a U-Net** architecture (FUSEDEM2B) to
accurately detect bordersin animage with heterogeneous dwell times
as well as if the image was taken with a single uniformly applied dwell
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time (Extended Data Fig. 1). We show an example image with multiple
dwell times, where long-dwell-time scanning occurs arbitrarily within
anS-shapedregion surrounded by short scanning (Fig. 2c). The borders
predicted by FUSEDEM2B are unperturbed when crossing between
regions taken with different dwell times.

Thus, the challenges in building a smart microscopy pipeline are
met by extensively using ML in both guiding image acquisition and
image analysis.

The smart microscopy pipeline

We developed an integrated smart pipeline that meets the above
challenges andillustrate how the pipeline operates onasmall tile from
the mouse cortex dataset™ (Fig. 3). The SmartEM pipeline first estab-
lishes a target segmentation quality by determining the minimum
standard dwell time required for maximal accuracy (for example,
800-1,000 ns per pixel for the mouse cortex dataset). The design and
implementation of the core components of SmartEM are described
below in detail.

To further reduce imaging time, we adjusted the pixel dwell time
locally based on maintaining segmentation accuracy. Most image
regions canbe segmented with full accuracy after scanning with ashort
dwell time. Additional dwell time was selected only for those regions
that required longer imaging to segment properly. This selection
was accomplished via a neural network (ERRNET) that learned what
regions required a longer dwell time after scanning whole images
with a short dwell time. ERRNET learns the features of error-causing
locations in raw short-dwell-time images that produce segmenta-
tion differences—erroneous merges or splits—in comparison to
long-dwell-time-acquired images.

To assemble the ‘ground truth’ to train ERRNET, the microscope
first takes a large set of images from random locations in the speci-
men at multiple dwell times (for example, from 25 to 1,200 ns per
pixel). These images are segmented to distinctly label every contiguous
neuron cross-section. Automatic labeling can be done using border
probabilities, a seeding procedure and a standard region-growing
algorithm such as watershed®. Segmented images at all dwell times
are compared to reference segmented images taken with the longest
dwelltime (1,200 ns per pixel for the mouse cortex datasetin Fig.1a,b,
longer than needed for fully accurate segmentation with SLOWEM2B).
To automatically learn segmentation discrepancies between short-and
long-dwell-time images, we developed a method to produce a binary
error mask that defines the morphological differences between two
segmented images based on the VI clustering metric*. We trained
ERRNET to predict error-causing regions in short-dwell-time images,
as shown in Fig. 3b. We used the VI metric to detect objects that are
morphologically different between segmentations of short- and
long-dwell-time images and then mapped the borders that differ for
these objects (Extended Data Figs.1and 2)*. We noted that all segmen-
tationerrorsinshort-dwell-time images canbe repaired (that is, leading
to segmentation identical to long-dwell-time images) by selectively
replacing only regions surrounding discrepancy-causing locations
in short-dwell-time images with corresponding regions taken from
long-dwell-time images.

In real-time operation, the SEM must take an initial rapidly
acquired image, execute ERRNET to detect error-prone locations,
define a rescan mask by padding error-prone locations to capture
enough context toimprove segmentationaccuracy and thenimmedi-
ately rescanall error-prone regions using longer dwell times (Fig. 3c).

Technique evaluation

We developed our SmartEM pipeline to expedite connectomicsrecon-
struction ontwo widely available SEMs, the Verios 5HP and the Magellan
400L, both from Thermo Fisher Scientific. We quantitatively estimate
the practical improvement in quality and speed of this pipeline for
connectomicsinavariety of tissues, including reimaging a previously

studied mouse cortex™, a previously studied human temporal lobe HO1
dataset’ and a newly prepared male C. elegans dataset.

One premise of the smart microscopy pipeline is that auto-
matically detecting error-prone regions and replacing them with
longer-dwell-time pixels will reduce segmentation errors. To test this
premise, we compared the accuracy of asegmentation pipeline trained
to deal with short-dwell-time images (FASTEM2B at 100 ns per pixel) to
aSmartEM pipeline trained to deal with composite images made from
shortandlongdwelltimes (FUSEDEM2B at100 ns per pixel and 2,500 ns
per pixel). The performance of these networks was compared to the
standard segmentation pipeline with long-dwell-time image acquisi-
tion (SLOWEM2B at 2,500 ns per pixel). For fair comparison, we used
the same long dwell time for the rescanning in the SmartEM pipeline
and for the uniform scanin the standard pipeline. We found that using
these dwell times, SmartEM is approximately 5x faster than the stand-
ard segmentation pipeline with long-dwell-time image acquisition and
approximately 2-3x more accurate (based on VI) than the standard
pipeline operating quickly (100 ns per pixel) (Extended Data Fig. 3).
Thus, fusing long-dwell-time pixels into a rapidly acquired image can
improve segmentation accuracy.

Another premise of the SmartEM pipeline is that the additional
time devoted to rescanning part of animage yields a greaterimprove-
mentinsegmentationaccuracy than distributing the same extratime
across all pixels with a uniform dwell time, as shown in Fig. 4a. To test
this premise, we used a ‘standard’ pipeline with competitively fast
settings: 400 ns per pixel for C. elegans and 75 ns per pixel for the
mouse and human cortex datasets. We then compared these images to
aSmartEM pipeline configured to match the same overall acquisition
time by combining an initial short scan and a targeted longer rescan
(Extended Data Fig. 4). For the three datasets, the initial SmartEM
dwell time was set to 300, 50 and 50 ns per pixel, and the rescan dwell
time was set to 800, 150 and 300 ns per pixel, respectively. In each
case, we adaptively selected 12.5%,16.7% and 8.33% of the most error-
prone regions for rescanning to ensure that total acquisition time
matched that of the standard pipeline. The procedure for select-
ing these SmartEM parameters for imaging is described below. We
compared the VI from 123, 219 and 62 segmented image tiles of each
pipeline to reference images taken at a long dwell time and found
that SmartEM produced substantially fewer errors than the standard
pipeline (sign tests and distributions of Vl differences are in Extended
DataFig.4).

We considered two scenarios for the large-scale collection of a
connectome dataset. The first scenario involves a fixed imaging time
budgettoacquireaselected datavolume at the selected pixel resolution.
Here, the task is to intelligently allocate a fixed imaging time to opti-
mize segmentation accuracy. The second scenario involves matching
afixed image quality toacquire avolume. Here, the task is to determine
SmartEM parameters (initial dwell time, rescan dwell time and rescan
rate) that maintain the quality of a given traditional dwell time while
minimizing the required imaging time. Below we analyze both scenarios.

Scenario1: Optimized accuracy with a fixed imaging time budget.
In Scenario 1, we fix the total imaging time and task SmartEM with
optimizing parameters (initial/rescan dwell times and rescan rate) to
maximize segmentation accuracy.

We present the results of parameter optimization for different
effective dwell times (smartimaging time) and across multiple datasets
(Fig.4b). This optimization links any effective dwell time (achieved by
optimizing the VIfor different T, Trescan) tO @an accuracy-equivalent
standard homogeneous dwell time. For example, an effective dwell
time of 150 ns per pixelin the mouse cortex dataset already attainsthe
maximal quality using a specific set of initial, rescan dwell times and
rescanrates thatare determined per tile. This quality is comparable to
standard homogeneous scan at 800-1,000 ns per pixel.

We show the time saved by SmartEM compared to standard
microscopy (Fig. 4b).For the mouse cortex dataset, the maximal saving
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is first scanned at a short dwell time, and error-prone regions are detected and
rescanned and then segmented. b, For training, SmartEM requires aligned stacks
of high-quality (long-scan) images and low-quality (short-scan) images. A border
detector, FUSEDEM2B (blue), is trained on this dataset to reproduce the high-
quality results of aborder detector that runs only on the long-scan images.
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long dwell times are compared (topology comparison), and abinary error map
featuring the differences between the two predictionsis produced. A second
network, ERRNET (red), is trained to predict this error map from the border
predictions of the short-dwell-time images. ¢, For acquisition, SmartEM first
performsashortscan. The trained networks FUSEDEM2B and ERRNET are used
to obtain arescan mask. This region is rescanned at alonger dwell time, resulting
inafused EMimage with better segmentation quality.

compared tostandard EMis achieved when SmartEM s used at an effec-
tive dwell time of ~125 ns per pixel, which corresponds to an accuracy
akinto-~690 ns per pixel by the standard pipeline. This effective dwell
time produces images at a speedup of ~6x with nearly maximal pos-
siblesegmentationaccuracy (Fig.1). The same analysis shows that the
C.elegans male nervering can be acquired at aspeedup of -5x and the
human temporal lobe at aspeedup of approximately ~7x.

We estimate the time to replicate the accuracy of SmartEM using
standard microscopy on 1terapixel of tissue (Fig. 4b). For the mouse
cortex, the SmartEM microscope running for 42 h of continuous imag-
ing achieves the same quality asastandard pipeline running for 212 h.

Scenario 2: Minimizing imaging time with fixed image quality. In
the second scenario, a certain volume needs to be segmented while
minimizing imaging cost. The totalimaging timeis not fixed inadvance,
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volume size and pixel resolution, determines the average dwell time (beam
time per pixel). The task is to identify SmartEM parameters (initial dwell time,
rescan dwell time and rescan rate) that optimize segmentation accuracy.
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accuracy. Error bars represent the mean + 1s.d. for random tiles from neuropil
area (worm, N=123; human, N = 62; mouse, N = 219). (ii), The resulting speedup
(ratio of the homogeneous dwell time to the SmartEM dwell time) from (i).

(iii), The data from (i) and (ii) illustrated for a fixed volume of 1 TB at 4 nm per
pixel with aslice thickness of 30 nm. ¢, In the second imaging scenario, the
desired EM quality is set by a standard pipeline’s dwell time, and the goal is to
identify SmartEM parameters that achieve equivalent segmentation quality
inminimal imaging time. Near-maximal segmentation quality (comparable to
homogeneous 1,000 ns-per-pixel scanning) is attained at roughly 207 ns per
pixel (C. elegans, blue tick), 155 ns per pixel (mouse, red tick) and 154 ns per pixel
(human, orange tick).

but the quality of the SmartEM images must still meet a standard. In
practice, SmartEM acquires the volume in away that achieves segmen-
tation results comparable to standard EM but in substantially less time.
First, the operator determines the dwell time required to achieve a
specific quality under standard homogeneous scanning, which can
be obtained from the SmartEM pipeline’s estimate of a minimum
homogeneous dwell time (Fig.1). Once the image quality is effectively
setbyselecting areference dwell time for uniform scanning, SmartEM
then uses its adaptive approach to minimize the overall imaging time
while maintaining comparable segmentation accuracy.

We analyzed the expected imaging time of SmartEM across the
three datasets by applying the following procedure separately to each
tissue. We firstacquired images at multiple homogeneous dwell times
ranging from 25 to 1,200 ns per pixel from the same areas. Next, we

applied SmartEM, using the same error detector (ERRNET) and border
prediction model (FUSEDEM2B), to produce composite dwell-time
images derived from different combinations of initial dwell time, rescan
dwelltime and rescan rate. To match each standard homogeneous dwell
time to an effective SmartEM dwell time, we identified the shortest
composite dwell time that produced segmentation results statistically
similar from those of the standard dwell time across tiles. We show
the relationship between the targeted standard dwell time and the
SmartEM dwell time with comparable accuracy (Fig. 4c).

For the mouse cortex, the highest possible quality of standard
EM at 800-1,000 ns per pixel (Fig. 1) is with a smart effective dwell
time of -149-155 ns per pixel. This ~5.4-6.5x speedup from standard
to SmartEM is achieved by selecting the percentage of rescanned
pixelsineachimagetileandletting ERRNET determine rescan locations.
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The C. elegans male nerve ring, in comparison to standard EM at
800-1,000 ns per pixel, can be acquired with a smart dwell time of
~182-207 ns per pixel (-4.4-4.8x). The human temporal lobe, compared
to standard EM at 500-1,000 ns per pixel, can be acquired at a smart
time of ~-134-154 ns per pixel (-3.7-6.5x).

Imaging and reconstruction of mouse cortex with SmartEM
We applied SmartEM to densely reconstruct multiple portions of
mouse cortex tissue. Two volumes of sizes 68 x 60 x 3 um® (Fig. 5a) and
118 x102 x 3 pm?(Fig. 6) and a section of size 205 x 180 um? (Fig. 5b—j),
were imaged at 4-nm-per-pixel resolution.

For the first volume acquisition, we used an initial dwell time of
75 ns per pixel, rescan dwell time of 800 ns per pixel and rescan rate of
10%, providing an effective dwell time of

Teffective = 75 + 0.1 x 800 = 155 ns per pixel.

This average dwell time for SmartEM corresponds to a standard dwell
time of 1,000 ns per pixel for traditional microscopy (see ‘Technique
evaluation’section). This acquisition tested the ability to acquire, stitch
and align in three-dimensional (3D) serial-section volumes.

For the second volume acquisition, we employed even more com-
petitive SmartEM parameters with an initial dwell time of 75 ns per
pixel, rescan of 800 ns per pixel and a rescan rate of 3%, providing an
effective dwell time of

Teffective = 75 + 0.03 x 800 = 99 ns per pixel.

For this volume, acomparison between the coregistered EM images
of short dwell time and composite dwell time is available in
neuroglancer*. This acquisition tested whether highly competitive
SmartEM imaging parameters would support accurate automated
neuronal reconstruction in 3D (described below).

To test the scalability of SmartEM to larger imaging grids, we
acquired asection of size 205 x 180 pm?composed of 30 x 30 individual
tiles with an initial dwell time of 75 ns per pixel, arescan of 600 ns per
pixel and arescan rate of 10%, providing an effective dwell time of

Teffective = 75 + 0.1 X 600 = 135 ns per pixel.

Asmentioned above, this effective dwell time corresponds to the maxi-
mal possible speedup of SmartEM for this dataset, producing images
with segmentation quality akin to standard EM at -1,000 ns per pixel.
We depict the segmentation of pipeline outputsin Fig. 5b—-d (left panel
inneuroglancer).

We also assessed the ability to detect synapses on short-dwell-time
images (25-1,000 ns per pixel) and applied this detection to the
aboveinitial scan of 75 ns per pixel with results that are comparable to
long-scanimaging, asshowninFig. 5e,fand Extended Data Figs. 5 and
6. We show the ability of SmartEM to detect and exclude regions of no
interest, where cytoplasm far from the membrane is detected from
theinitial scan, allowing SmartEM to force skipping of long-dwell-time
scanning from these regions (Fig. 5g,h). We demonstrate the ability
to translate the fused images to uniform-looking EM tiles with quality
akin to long-dwell-time imaging (Fig. 5i,j and Extended Data Fig. 7;
visualized in neuroglancer).

To validate SmartEM for connectomics, we tested whether the
resulting image volumes supportaccurate 3D automated reconstruc-
tion and proofreading. We first focus our analysis to the problems of
neuronreconstruction. We applied alightweight 3D neuron segmenta-
tion algorithm to the mouse cortex volume acquired at a competitive
average dwell time of 99 ns per pixel (visualized in neuroglancer). We
assessed the quality of resulting SmartEM image volume with auto-
mated reconstruction of fine processes and expert manual annotation
(Fig. 6b), as described below.

Connectomes can contain ‘split’errors (fragmenting the volume of
one cell) or ‘merge’ errors (joining the volume of two cells). Because a
comprehensive analysis of merge errors typically requires larger recon-
structed volumes to assess metrics such as error-free run-length, we
qualitatively inspected and verified that none of the large segmented
objects was implicated in catastrophic merge errors (Fig. 6¢). Spines
are the fine processes that protrude from dendrites and contain syn-
apses. To further benchmark SmartEM performance quantitatively,
we studied split errors in the 3D reconstruction of dendritic spines,
a challenging feature for automated reconstruction. We randomly
selected three dendrites (Fig. 6b). We counted spines that were fully
automatically reconstructed without split errors and spines with split
errors. Expert human annotators verified every correct reconstruction
and verified that every split error was correctable with proofreading.
The percentage of correct spines was approximately 58%, 53% and 75%
in the three dendrites. The combined percentage of correct spines
was 65%, comparable to the rate of correct spine capture in recent
automated reconstruction of human cortex (67%)".

In addition to validating the quality of automated neuron recon-
struction in the mouse cortex volume, as described above, we also
trained aneural network to automatically reconstructed synapses and
validated the results against expert manual annotation (Fig. 6d and
neuroglancer). We measured object-wise synapse precision, recalland
the Fl-score in 3D. When evaluated on the test dataset, we obtained a
precision of 93.2%, a recall of 94.1% and an Fl1-score of 93.7%, compa-
rable to state-of-the-art performance on traditional EM volumes**,

Discussion

Recentadvancesin ML will likely shift the bottleneck in connectomics
fromimage analysis to dataacquisition. The SmartEM approach directly
addresses this challenge by integrating computational intelligence into
single-beam SEMs. Implemented on commodity hardware, SmartEM
transforms widely available single-beam SEMs into high-throughput
platforms with minimal hardware modification. Beyond accelerating
imaging acquisition, SmartEM’s computational frameworkis adaptable
to different microscopy modalities, enabling intelligent, data-aware
imaging in various scientific fields (see below).

A strength of SmartEM is its flexibility. The pipeline’s core
components—error prediction with ERRNET, real-time targeted rescan-
ning and segmentation of composite images with FUSEDEM2B—are
modular. Forinstance, ERRNET can be trained using any segmentation
algorithm to detect errors based on user-defined metrics, not just
the VI used here. This adaptability allows laboratories to integrate
their preferred analysis tools and tailor the pipeline to diverse sample
preparations and scientific questions.

SmartEM canimprove the efficiency and accuracy of SEM image
acquisition in any context where it is beneficial to selectively adjust
imaging time across different regions. Analogous to foveal vision®,
SmartEM performs arapid, wide-field scan and then selectively rescans
only the information-critical areas at higher fidelity. SEM is widely
used in materials science and manufacturing, where samples often
have regions varying substantially in detail and complexity. These
applications, as well as others where specific structural features can
be predicted but not accurately reconstructed from an initial rapid
scan, are suited to SmartEM. Imaging approaches that take advantage
of electron beam-sensitive materials, such as cryo-EM, could also ben-
efit from the selective rescanning of SmartEM. Sparsely distributed
structures or molecules of interest can first be rapidly identified and
thenselectively rescanned at longer dwell time, reducing overallbeam
exposure while enhancing image quality.

Although we focused on neuronal reconstruction for connectom-
ics, SmartEM was also adapted to selectively rescan high-quality images
of salient structures such as chemical synapses, providing morpho-
logical reconstructions without substantialincreases in totalimaging
time. Likewise, SmartEM canbe readily adapted for applicationsincell
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Fig. 5| Segmentation of mouse cortex using SmartEM. a, Stitched and

aligned SmartEM volume of size 68 x 60 x 3 pm? (94 sections) (neuroglancer).

b, Segmentation of a single stitched SmartEM section of size 205 x 180 pm?using
FUSEDEM2B and watershed transform (left panel in neuroglancer). ¢, Location of
the highlighted region in b with respect to the total section. d, Detailed depiction
of segmentation in the boxed regionin c. e,f, Automatic detection of synapses

(f) from ashort-dwell-time image (e). g,h, Automatic detection of regions to

be excluded (h) from ashort-dwell-time image (g). ij, An image (i) made of
composite dwell times is stylized to appear akin to ahomogeneous dwell time
image (j). A comparison between composite dwell time and homogenized images
isavailablein neuroglancer.

biology or pathology by selectively recognizing and rescanning other
sparse but biologicallyimportant structures, such as mitochondria or
other organelles.

The pipeline can also be trained to increase efficiency by exclud-
ingregions of non-interest fromrescans. For example, ininvertebrates
like C. elegans, where neural tissue constitutes a small fraction of a
cross-section, SmartEM can automatically focus imaging time on the
nerve ring, eliminating the need for laborious manual annotation of
regions of interest.

Instead of collecting serial sections on tape, one can use block-face
imaging with serial tissue removal. One block-face approach, focused
ion beam SEM (FIB-SEM), has distinct advantages over tape-based

serial-section sample collection, including thinner tissue layers
(4-8 nm) and better preservation of image alignment**. The primary
disadvantage of FIB-SEM s its slow acquisition speed. SmartEM could
mitigate this by accelerating the imaging step, enabling the collection
of larger volumes in continuous runs and making block-face tech-
niques like FIB-SEM and serial block-face SEM* more practical for
large-scale connectomics. SmartEM is expected to provide greater
speedup on block-face imaging because the imaging component is a
larger part of the entire acquisition pipeline compared to serial-section
SEM. Similar benefits will be obtained with other block-face imaging
approachessuch asserial block-face SEM where adiamond knife slices
the specimen®,
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Proofread
dendrite

Automated

4

Synapse prediction

Fig. 6 | Neuronal and synapse reconstruction of amouse cortex SmartEM
volume taken at an average time of 99 ns per pixel. a, A section showing overlay
of fused EM and an automated neuronal reconstruction, long- and short-dwell-
time pixels at 800 ns per pixel (T;.,) and 75 ns per pixel (T, respectively, and
arescanrate of 3% (). b, A dendrite reconstruction proofread by an expert (red)
achieved by manually itemizing and reconstructing all dendritic spines from

the fused EM image stack. An automated reconstruction (blue) achieves a high
reconstruction rate of the dendritic spines. Arrowheads indicate spliterrors.

Performance

True positive
False positive
B False negative

¢, Arendering of the automated 3D reconstruction of all sections in the dataset
(94 sections). The reconstruction can be viewed in neuroglancer.d, Smoothed
renderings of synapses showing the neural network prediction (left), expert
ground truth (center) and acomparison (right). In the comparison, true positives
(N=96)arelabeled in opaque light blue, false positives (V=7) in red and false
negatives (N = 6) in yellow. Synapse network predictions and ground truth can be
visualized in neuroglancer.

Future improvements could yield even greater speedups. Lever-
aging 3D context from adjacent sections could reduce redundant
rescans”***, In addition, intelligently adjusting spatial resolution
for different regions of tissue could further optimize beam time.
These strategies can establish fast single-beam SEMs as a powerful
and accessible alternative to multibeam systems for connectomics.
Anactiveareaof currentresearchis accelerating the end-to-end pipe-
line by parallelizing the ML with imaging and using larger fields of
view*®, We note that commercial multibeam SEMs, with their multiple
beams controlled synchronously, cannot directly leverage some of
these SmartEM strategies. Nonetheless, our innovations could sub-
stantially accelerate single-beam SEMs, positioning them as a viable
alternative to the currently used high-throughput electron micro-
scopes for connectomics.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Segmenting composite images

The smart microscope should be able to analyze images composed
from multiple dwell times (Figs. 1c, 2b,c, 3and 5a-d). We tested whether
replacing error-proneregionsinashort-dwell-timeimage withregions
taken from long-dwell-time images improves segmentation out-
comes. Extended Data Fig. 3 depicts the segmentation outcome of a
short-dwell-time image taken at 100 ns per pixel segmented with adedi-
cated100 ns per pixel network FASTEM2B (Extended DataFig.3a,e) and
by FUSEDEM2B (Extended Data Fig. 3b,f). The segmentation quality of
these networks are similar (top panel; VI=0.025and VI = 0.022).In most
scenarios, the network trained to deal with fused EM (FUSEDEM2B) pro-
ducesbetter results than networks trained to handle a fixed dwell time,
eveniftheinputinto the two networks consists of asingle homogene-
ousdwelltime. Extended DataFig.3c,g depicts the segmentation of an
image where the error-prone regions were detected by an error detec-
tor and replaced with long-dwell-time pixels (2,500 ns). The error level
istypically and substantially cut by ~3-4x. The 2,500-ns-per-pixel refer-
enceimage andits segmentation are shownin Extended Data Fig.3d,h.
All error estimates based on VIshown in Extended Data Fig. 3 are pre-
sented as the sum of the merge-error term and split-error term.

Imaging procedure

The SEM is automated to acquire images of individual tiles of every
specimen section that are eventually stitched and aligned to form a
totalimage volume (Fig. 3). The microscope navigates through multiple
specimensections held ontape and defines every specimen region of
interest (S-ROI). Each S-ROl is captured at high spatial resolution by
multi-tileacquisition. To identify the S-ROl and automate stage position
androtation control, we used SEM Navigator, acustominterface akinto
earlier WaferMapper software®. The list of S-ROls is exported into a text
file, whichis subsequently processed by the SmartEM pipeline (coded
in Python/Matlab) using the Thermo Fisher Scientific Autoscript pack-
age (https://www.thermofisher.com/us/en/home/electron-micro-
scopy/products/software-em-3d-vis/autoscript-4-software.html). The
SmartEM pipeline controls the microscope and moves to S-ROl and
individual tile positions, controlling the entire acquisition sequence.

Forallimage acquisitions, we used the Ultra High Resolution imag-
ing mode with 4-nm-per-pixel spatial resolution and ~4-mm working
distance.Image contrast was obtained using aback-scattered electron
detector with2,000-V stage bias. The initial short-dwell-time scan was
obtained using the full-frame-acquisition Autoscript interface. The
subsequent long-dwell-time rescan utilized the standard interface of
Autoscript patterning.

To optimize image quality and tuning time for both short move-
ments between neighboring tiles and long movements neighbor-
ing sections, we customized sequences of various autofunctions.
These autofunctions included auto-contrast/brightness, auto-focus,
auto-stigmation, auto-focus/stigmation and auto-lens alignment.

Because we used different interfaces for theiinitial short-dwell-time
scan and long-dwell-time rescan, an additional alignment procedure
was necessary to achieve pixel-resolution precisionintherescan. The
basic system configuration for the rescan acquisition is described
inref. 50.

When the rescan long dwell time was shorter than -500 ns per
pixel, an unavoidable artifact due to limited system response of the
electron deflection system occurred at the edge of rescan regions.
We excised this artifact by omitting a 1-pixel boundary from every
rescanregion.

Segmentation quality metric

To compare the segmentation quality of different samples, we used a
VImetric®. In principle, all comparisons that we made in this study can
be accomplished with other metrics of segmentation quality as long
asthey canbeapplied to two-dimensional (2D) images. We expect the

choice of segmentation metric to have little effect as long as any metric
assesses topological attributes similar to VI (that is, whether objects
are split or merged). Our implementation of the VI running on
CPU/GPUis available at https://pypi.org/project/python-voi/.

Using VI to build ERRNET. To train the error detectors, we needed
tolocate the specific regions that contribute to the largest segmenta-
tion differences between image pairs, which is not provided by the VI
metric. VI combines split and merge errors. The two error measures
are defined by comparing the entropy of three segmented images®,
Siell, s, elfand s, xS, e LY x L), for two N-pixel labeling (instance
segmentation) S; and S, that needs to be compared, where the Ls
represents the sets of pixel labels. The segmented image S, x S, is
labeled by concatenating the labels from S, and S, for each pixel.
The Vlis then the sum of two error terms Vi, and Vi,

Vlmerge = H(Sl X SZ) - H(Sl)’
Vispiic = H(S1 X 53) — H(S,), ()]

VI = Vlperge + Vgpiic-

Due to the additivity of the entropy measure®, VI, ..z and VI
can be broken into individual constituents, representing the amount
oferror contributed by eachindividual label in each segmentation. We
could thusrank objectsin each segmentation according to the amount
of variation they contribute to overall VI (Supplementary Fig. 1). The
error contributed by the set of pixels that are bothin segments, € §;and
s, €S, (thatis, theerror contributed by asegmentin §; x S,) is

Wisins) — Wisy)

and

W(s1 nsy) — W(sy),

for the splitand merge errors, respectively, where W(A) = — ‘iN' x log 'iN‘,

|A]is the number of pixelsin A and Nis the number of pixels in the image.

Once the substantiallyincompatible objects are detectedineach
segmentation, we used image processing to delineate the borders that
are responsible for the topological differences between the two seg-
mented images (Extended Data Fig. 2). We then produced binary masks
from these errors and trained neural networks (ERRNET) to detect
them directly from border probability maps, themselves produced
by another neural network (FASTEM2B). Detecting borders allows
our technique to disregard small ‘cosmetic’ variations between two
segmentations that do not cause meaningful topological differences.

Standard dwell time for high accuracy segmentation

The goal of the SmartEM pipeline is to reach the same segmentation
accuracy asastandard SEM when using a uniform long-dwell-time scan-
ningregime, butacquiring theimagesin much less time. Toaccurately
assess the improvement of SmartEM over a standard SEM imaging
regime, we needed first to determine the shortest uniform dwell time
that leads to accurate segmentation (for example, 800-1,000 ns per
pixelinthe examplein Fig. 1b).

Toaccomplishthis, we trained aneural network called SLOWEM2B
to performautomatic border predictionin long-dwell-time-acquired
images. We collected a diverse subset of long-dwell-time images
fromrandom locations inaspecimen, typically twenty 5 x 5 um?tiles,
and performed manual segmentation by an expert to create training
datafor SLOWEM2B.

Next, we used SLOWEMZ2B to train a different neural network
called EM2B that was capable of predicting borders with either long-
or short-dwell-time images. Because the SEM allowed for reimaging
the same regions at different dwell times, it was possible to guide
the microscope to collect a large sample of EM images from different
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random locationsin the specimen, using different dwell times ranging
from25t02,500 ns per pixel, as shown in Fig. 3. SLOWEM2B was applied
to the long-dwell-time image at each location to automatically create
segmentations that we could use as ‘ground truth’ to train EM2B to
predict segmentations inbothlong-and short-dwell-timeimages. Both
SLOWEM2B and EM2B were implemented using a U-Net architecture.

SLOWEM2B and EM2B calculated the trade-off between pixel dwell
time and segmentation accuracy. EM2B was used to automatically
segment all dwell-time images (for example, from 25 to 1,000 ns per
pixel for the mouse cortex dataset) and compare them to a reference
automatic segmentation corresponding to the longest-dwell-time
image (for example, 1,200 ns per pixel image). Thus, it was possible
to identify the shortest dwell time for which mean accuracy across
tiles was not further improved by longer-dwell-time imaging. This
minimum dwell time was defined by SmartEM as the required dwell
timeto achieve agreement with the longest-dwell-time segmentation.

Determination of maximal segmentation quality. We developed an
unbiased estimate for the minimal dwell needed for 2D segmentation.
We compared segmentations from Nimages for each pair of dwell times
d, <d,and anoverly slow dwell time d,.;. We asked whether the Vl of the
d,images was significantly smaller (P < 0.05; Wilcoxon signed-rank test)
than d, images compared to d,.images. When two dwell times were
not sufficiently different, we called them equivalent. We defined the
minimum dwell time with near-maximal segmentation ability as that
dwell time beyond which VI does not improve.

Image normalization and augmentation

To train the FUSEDEM2B network, we used the CLAHE® normalization
withclipLimit = 3to bring allimages toacommon color space. We used
on-the-fly rotation, flip, translation to augment the images in the train-
ing set. Although images are naturally 2,048 x 1,768, we subsampled
256 x 256 squares to train the network. To allow the network to deal
withimages withmultiple dwell times, we randomly replaced patches
atrandom locations with different dwell times (Extended Data Fig. 1).
Specifically, each sample was generated by choosing abaselineimage at
asingle dwell time and replacing up to 30 patches with amaximum size
of 11 x 11 pixels with the corresponding pixels of an image with longer
dwelltime. To train ERRNET, we normalized border probabilities to [0,1]
asaninputto the network. We used the same procedure for on-the-fly
translation and rotation but did not replace patches.

Accuracy optimization with fixed time budget

We fixed the totalimaging time budget for agiven specimen. From this
requirement, the pixel dwell time was determined after subtracting
overhead factors (such as image focusing, astigmatism correction
and mechanical stage movement) from the total budget. For example,
the user might need to image a given specimen—100 x 100 x 100 pum?
tissue, cutin 30-nm-thick sections, imaged at4-nm spatial resolution—
within5days of continuous EM operation. These constraints determine
the average dwell time per pixel:

(5 x 24 x 3,600 sec)(42 x 30 nm?>)

3 = 207.36 ns per pixel.
(100 pm)

Forastandard EM pipeline, 207.36 ns per pixel becomes the homo-
geneous pixel dwell time. For the SmartEM pipeline, theinitial scan and
rescanof allerror-proneregions should sumto anaverage of207.36 ns
per pixel. This average dwell time, which we call effective dwell time,
canbe achieved with different combinations of initial dwell time, rescan
dwell time and percentage of rescanned pixels:

Teffective = Tinitial +ax Trescan

where Trepresents dwell times.

Forexample, an effective average dwell time of 207.6 ns per pixel is
achieved with aninitial dwell time of T,;,; = 100 ns per pixel, rescanrate
of a=5%and rescandwell time of T,.,, = (207.36 —100)/0.05 = 2,147.2 ns
per pixel. These parameter settings correspond to a specific segmenta-
tion accuracy (VI) relative to the reference homogeneous long-scan
image. SmartEM considers a grid of parameter settings and calculates
the Tiniar Trescan aNd arsettings that produce maximal accuracy (minimal
VI) compared to the segmentation of reference tiles, while guarantee-
ing the effective dwell time.

Optional image homogenization

The SmartEM pipeline produces composite image with pixels acquired
at different dwell times. A human observer will note contrast differ-
ences at interfaces between pixels with different dwell times. To
increase human image interpretability, we built an image translator
component that homogenizes SmartEM images to look like standard
EM images with uniform dwell times. Extended Data Fig. 7 shows a
specificexample: afused EM image that is amosaic of subimages with
different dwell times. To mitigate dwell-time contrasts and produce a
visually coherent image, we applied a conditional generative adver-
sarial network IMAGEHOMOGENIZER, cGANs)>. Previous studies
used deep learning toimprove the quality of microscopy images>*>~,
denoise EM images™ and performimage reconstructionacross differ-
ent modalities®. IMAGEHOMOGENIZER contains two convolutional
neural networks (CNNs): a generator and a discriminator®’. Training
data are a composite image and a uniformly long-dwell-time image,
where the composite image is generated by randomly combining
pixels from short-dwell-time and long-dwell-time images in different
proportions (Fig. 5b-d, where the composite images consist of
75-and 600-ns-per-pixel dwell times). Asshownin Supplementary Fig. 5,
during the training process, the generator translates the simulated
composite images to resemble long-dwell-time images, and the dis-
criminator attempts to distinguish the translated images from real
long-dwell-time images. The training process utilizes L11oss and adver-
sarial loss. After image homogenization by the generator, the fused EM
images are more suitable for human inspection and retain the visual
details of fine ultrastructure (Extended Data Fig. 7).

Synapse segmentation and neuronal reconstruction

Neuron reconstruction technique. To reconstruct neurons in 3D,
we applied a lightweight segmentation method that we previously
used toreconstruct neurons fromthe same sample imaged by a multi-
beam SEM™ and tissue prepared using a whole-mouse-brain-staining
technique. First, pixels straddling intracellular spaces were pre-
dicted by a CNN, based on the pretrained FUSEDEM2B network. To
improve the network accuracy, we fine-tuned FUSEDEM2B using
thirty-six 1,024 x 1,024 SmartEM tiles obtained from random loca-
tions in the target volume and annotated by an expert. Predictions
from FUSEDEM2B were used as a starting point for the annotation
process of the training set. All sections were segmented in 2D using
the fine-tuned network and watersheds®. Second, a CNN was trained
to predict from the EM the medial axis of all objectsin 2D. This process
required no additional human annotation. Third, 2D object segments
were agglomerated across sections based on shape alignment and
similarity. Inaddition, 2D segments were agglomerated if their medial
axes were well-aligned using a fixed threshold determining large
overlaps. Fourth, agglomerated objects containing a large number
of adjacent 2D segments were flagged as objects with possible merge
errors. This was done by building a regional adjacency graph whose
nodes were 2D segments and edges represented spatial adjacency.
Then these objects were reagglomerated iteratively from the origi-
nal 2D object segments until the merge-error criterion was attained
using aniterative clustering technique®. Fifth, orphans were detected
and connected to other orphans or non-orphan objects based
on their best estimate from the agglomeration graph: that is,

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02929-3

connecting them to objects that did not pass the agglomeration
threshold in the first iteration. The results of the reconstruction are
shownin Fig. 6¢.

Criterion for filtering dendritic spines. Three dendrites were
randomly selected for quantitative analysis. We defined correctly
segmented spines as spines whose segmentation included their
synapse-containing regions. Incorrectly segmented spines were split
errors that occurred before the synaptic region. To avoid confusing
spines with dendritic filopodia, we excluded putative spines from
analysisif no potential synapse was contained in the image volume. We
observed three types of error: Type 1 errors occurred when the spine
was prematurely truncated by a split error that occurred before the
spine’s corresponding synapse that was not due to an obvious image
artifact (for example, tissue preparation, folds in the section). Type
2 errors occurred when the spine was not tracked at all due to a split
error atits base on the dendrite that was not due to an obvious image
artifact. Type 3 errors occurred when the spine was lost due to an obvi-
ous artifact. We observed such errors caused by local aberrations in
tissue preparation in sections 56, 65, 66, 77 and 88. The distribution
of incorrect spines and their corresponding error type is shown in
Supplementary Table 1. To characterize only errors that might be
associated with the SmartEM technique, we excluded the rate of Type
3 errors from consideration.

Synapse reconstruction technique. Synaptic active zones were
manually segmented in VAST®® and agreed upon by two expert anno-
tators. Two ground-truth volumes, GT1 and GT2, were generated,
of sizes 7 x 3.5 x 3 pm>and 4 x 4 x 3 um?, respectively. A U-Net was
trained on GT1to predictactive zones from EM images via the PyTorch
Connectomics library®®*, To avoid edge effects, the trained network
was applied on a padded version of the EM from GT2. A threshold of
0.8 was applied to the outputs of this network, followed by 3D con-
nected components with 26-connectivity using the cc3d library®’. We
removed segments that were smaller than 400 voxels. All parameters
for post-processing were determined without studying the statistics of
GT2;the voxel threshold was obtained by rounding down the smallest
segmentsizein GT1. Theresults were finally cropped to account for the
fact that the EM input was padded.

Validating synapse reconstruction. To assess synapse segmentability,
we replicated CONFIRMS®**, a quantification tool developed for EM
pipeline validation. In short, synapse segments were converted into
keypoints by determining the location of their centroid and matched
according to the distances between these keypoints. The matches
were manually verified in neuroglancer. When the matching algorithm
incorrectly assigned a synapse a certain label (for example, a synapse
was assigned false positive when it was really atrue positive), it was cor-
rected by experts. We made corrections conservatively to the results of
the matchingalgorithm. For example, if expert annotators saw a false
positive but believed it to be an ambiguous synapse, it was still treated
as afalse positive. The precision, recall and F1-scores were calculated
after these corrections were made.

Image stitching and alignment

The stitching and alignment of the sample volume were performed
on composite dwell-time images. After applying a band-pass filter to
raw images, we used conventional block-matching technique to
obtain matching points between neighboring images, from which
elastic transformations mapping the raw data to the aligned volume
were computed by mesh relaxation. Code for stitching and alignment
is available on GitHub at https://github.com/YuelongWu/feabas. We
applied the same stitching and alignment transformations to the
fast, composite and homogenized images to produce three sets of
final volumes.

Sample preparation

Three samples were used in our experiments. These were (1) a previ-
ously studied mouse cortex*, (2) apreviously studied human temporal
lobe') and (3) ahigh-pressure-frozen male C. elegans. The preparation
ofthe male C. elegansis described as follows. Several C. elegans males
were transferred from a mixed-culture plate (N2 wildtype strain) to a
separate plate seeded with E. coli OP50, where they were kept for 16 h
before high-pressure freezing. L4 larvae were selected, and they all
became adults by the time of high-pressure freezing. For high-pressure
freezing, we used gold-coated copper carriers (16770152 and 16770153,
Leica), which were soaked in a 2% lecithin in chloroform solution and
allowed to dry torender their surface non-stick®. Live C. elegans males
were transferred from the culture plate to the carrier together with
a small amount of E. coli substrate. The samples were then frozen
using a high-pressure freezer (EM ICE, Leica). This was followed by
freeze-substitution, which was carried outinaprogrammable unit (EM
AFS2, Leica) usingasolution of 1% ddH20,1% 0sO4 and 1% glutaralde-
hyde in acetone at -90 °C for 48 h, after which the temperature was
increased by 5 C° per hour until it reached 20 °C (ref. 67). The sample
pellets were then washed with acetone (three times) and infiltrated
with 50% Epon in acetone for 1h, 75% Epon in acetone overnight and
100% Epon for 1 h (the last step was repeated twice) and finally cured
at 60 °C. The samples were imaged with microCT to check for major
cracks. Thirty-five-nm sections were cut and collected on kapton tape
using a Leica EM UC6 ultramicrotome and ATUM section collecting
device™®. The tape with the sections was mounted on silicon wafers,
and the sections were then post-stained with uranyl acetate and lead
citrate as described in ref. 68. The samples were kept under vacuum
foratleast 24 h beforeimaging to minimize any beam-related damage
due toresidual water.

Statistics and reproducibility

All statistical tests were done using the Wilcoxon signed-rank test
for paired samples. The test was used to assess the cases where
two dwell times produce similar segmentation quality by comparing
the VI of individual samples to a single reference taken at a longer
dwell time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

AllSmartEM datasets and ML models are publicly available viaa BossDB
Project Page (The Brain Observatory Storage Service and Database) at
https://bossdb.org/project/meirovitch2025 (ref. 69).

Code availability

All code necessary to implement SmartEM has been made avail-
able via GitHub at https://github.com/cfpark00/SmartEM under an
MIT License.

References

49. Hayworth, K. J. et al. Imaging atum ultrathin section libraries with
wafermapper: a multi-scale approach to EM reconstruction of
neural circuits. Front. Neural Circuits 8, 68 (2014).

50. Potocek, P. Adaptive specimen image acquisition using an
artificial neural network. US patent 10,928,335 (2021).

51. Pizer, S. M., Johnston, R. E., Ericksen, J. P., Yankaskas, B. C. &
Muller, K. E. Contrast-limited adaptive histogram equalization:
speed and effectiveness. In Proc. 1st Conference on Visualization
in Biomedical Computing (eds Hohne, K. H. & Pizer, S. M.) 337-345
(IEEE, 1990).

52. Mirza, M. & Osindero, S. Conditional generative adversarial nets.
Preprint at https://arxiv.org/abs/1411.1784 (2014).

Nature Methods


http://www.nature.com/naturemethods
https://github.com/YuelongWu/feabas
https://bossdb.org/project/meirovitch2025
https://github.com/cfpark00/SmartEM
https://arxiv.org/abs/1411.1784

Article

https://doi.org/10.1038/s41592-025-02929-3

53. Wang, H. et al. Deep learning enables cross-modality
super-resolution in fluorescence microscopy. Nat. Methods 16,
103-110 (2019).

54. Weigert, M. et al. Content-aware image restoration: pushing the
limits of fluorescence microscopy. Nat. Methods 15, 1090-1097
(2018).

55. Mi, L. etal. Learning guided electron microscopy with active
acquisition. In Proc. Medical Image Computing and Computer
Assisted Intervention (eds Martel, A. L. et al.) 77-87 (Springer, 2020).

56. Li, Y. etal. X-ray2em: uncertainty-aware cross-modality image
reconstruction from X-ray to electron microscopy in
connectomics. In Proc. 20th IEEE International Symposium on
Biomedical Imaging (ISBI) 1-5 (IEEE, 2023); https://doi.org/10.1109/
ISBI53787.2023.10230759 (2023).

57. lIsola, P, Zhu, J. Y., Zhou, T. & Efros, A. A. Image-to-image
translation with conditional adversarial networks. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
5967-5976 (IEEE, 2017).

58. Pavarino, E. C. et al. mEMbrain: an interactive deep learning
MATLAB tool for connectomic segmentation on commodity
desktops. Front. Neural Circuits 17, 952921 (2023).

59. Bailoni, A. et al. Gasp, a generalized framework for agglomerative
clustering of signed graphs and its application to instance
segmentation. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition 11645-11655 (IEEE, 2022).

60. Berger, D.R., Seung, H. S. & Lichtman, J. W. Vast (volume annotation
and segmentation tool): efficient manual and semi-automatic
labeling of large 3D image stacks. Front. Neural Circuits 12, 88 (2018).

61. Lin, Z., Wei, D., Lichtman, J. & Pfister, H. Pytorch connectomics:

a scalable and flexible segmentation framework for EM
connectomics. Preprint at https://arxiv.org/abs/2112.05754 (2021).

62. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. In Proc. Neural Information Processing
Systems (NeurlPS) 8024-8035 (Curran Associates, Inc., 2019).

63. Silversmith, W. cc3d: connected components on multilabel 3D &
2D images. Zenodo https://doi.org/10.5281/zenodo.5719536 (2021).

64. Bishop, C. et al. CONFIRMS: a toolkit for scalable, black box
connectome assessment and investigation. In Proc. 43rd Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC) 2444-2450 (IEEE, 2021); https://doi.org/
10.1109/EMBC46164.2021.9630109

65. Xenes, D. et al. Neuvue: a framework and workflows for high-
throughput electron microscopy connectomics proofreading.
Preprint at bioRxiv https://doi.org/10.1101/2022.07.18.500521 (2022).

66. Mulcahy, B. et al. A pipeline for volume electron microscopy of
the Caenorhabditis elegans nervous system. Front. Neural Circuits
12, 94 (2018).

67. Weir, K., Dupre, C., van Giesen, L., Lee, A. S.-Y. & Bellono, N. W.

A molecular filter for the cnidarian stinging response. eLife 9,
e57578 (2020).

68. Baena, V., Schalek, R. L., Lichtman, J. W. & Terasaki, M. in Three-
Dimensional Electron Microscopy, vol. 152 of Methods in Cell Biology
(eds Miller-Reichert, T. & Pigino, G.) Ch. 3 (Academic, 2019).

69. Hider, R. et al. The brain observatory storage service and database
(bossdb): a cloud-native approach for petascale neuroscience
discovery. Front. Neuroinform. 16, 828787 (2022).

Acknowledgements

Research reported in this paper was supported by the NIH BRAIN
Initiative under grant no. UOINS132158 (awarded to A.DT.S., JW.L.,
N.S., H.P. and B.A.W.) and by NIH grant nos. 5U24NS109102 (awarded
to JW.L.) and UO1 NS108637 (awarded to JW.L.). L.M.s work was
supported in part by a fellowship from MathWorks. T.L.A. is supported
by the MIT-Novo Nordisk Artificial Intelligence Postdoctoral Fellows
Program. This article is dedicated to our friend and colleague S.S. who
sadly passed away earlier this year.

Author contributions

Y.M., 1.S.C., C.F.P. and P.P. contributed equally to this work.
Conceptualization: the original idea was conceived by Y.M., N.S., JW.L.
and A.DT.S. The core methodology was invented by Y.M. Additional
conceptual contributions were provided by D.R.B., H.P., L.M., M.P., P.P.
and R. Schoenmakers. Methodology and software: Y.M. led the overall
implementation. Y.M., I.S.C. and C.F.P. performed the main software
development and experiments. P.P. assisted with the utilization of
Thermo Fisher’s APl and contributed to experiments. R. Schalek

and M.P. assisted with microscope operation. S.S. developed the
EMInclude and EMExclude methods and, with T.L.A., performed neural
network optimization. Y.L. developed the image homogenization
method using GANSs. L.M. provided access to an early version of the
ML-based imaging methods. Data and validation: V.S. prepared the

C. elegans sample, and N.K. provided the mouse cortex wafer. Y.W.
performed data stitching and alignment. I.S.C., C.A.B., D.X., H.M., J.M.
and B.AW. validated the segmentation accuracy. D.R.B. created the
visualizations. Supervision and writing: the project was supervised by
JW.L., A.DT.S. and N.S. The paper was written by Y.M., I.S.C., JW.L. and
A.DT.S. with significant writing contributions from S.S., Y.L. and T.L.A.
and input from all authors.

Competinginterests

P.P., M.P. and R. Schoenmakers are employees of Thermo Fisher
Scientific. L.M. received funding from MathWorks. The other authors
declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-025-02929-3.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-025-02929-3.

Correspondence and requests for materials should be addressed
to Yaron Meirovitch, Jeff W. Lichtman, Aravinthan D. T. Samuel or
Nir Shavit.

Peer review information Nature Methods thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editor: Nina Vogt, in collaboration with the Nature Methods
team.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1109/ISBI53787.2023.10230759
https://doi.org/10.1109/ISBI53787.2023.10230759
https://arxiv.org/abs/2112.05754
https://doi.org/10.5281/zenodo.5719536
https://doi.org/10.1109/EMBC46164.2021.9630109
https://doi.org/10.1109/EMBC46164.2021.9630109
https://doi.org/10.1101/2022.07.18.500521
https://doi.org/10.1038/s41592-025-02929-3
https://doi.org/10.1038/s41592-025-02929-3
http://www.nature.com/reprints

Article https://doi.org/10.1038/s41592-025-02929-3

EM inut o 'Bre‘r GT

(%]
c
2
e
O
O
o
@)
©
C
[g°]
oc
Microscope rescan augmentation
25 200 1200
Dwell time (ns)
Extended Data Fig. 1| Dwell time rescan data augmentation. Rows 1-5 show inblue, representing 25 ns/pixel scans; long dwell time pixelsin red, representing
differentlocations in the EM sample. Columns 1-4 show different augmented 1200 ns/pixel. Column 5 shows the ground truth classes for each region that were

compositeimages that were taken at different dwell times; short dwell time pixels ~ obtained from the long dwell time neural network (SLOW2EM).
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SlowEM?2B borde
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Information
Discrepancy(Net1,Net2)

Extended Data Fig. 2| The discrepancy between segmentation with long dwell
time (using SLOWEM2B) and short dwell time (using FASTEM2B) based on VI.
Vlis the sum of individual error terms contributed by each object in the two
segmented images. The most variable objects are flagged. Image processing is
used to delineate specific borders that appear in only one segmented image.
Yellow represents segmented objects that are uniquely predicted in the long

dwell time image. Red represents segmented objects that are uniquely predicted
inthe short dwell time image. A neural network (ERRNET) is trained to predict all
red and yellow discrepancies only using short dwell time images. This is possible
because variation occurs where border predictors are uncertain and often with
typical, at times biologically implausible, border prediction.

Nature Methods


http://www.nature.com/naturemethods

Article https://doi.org/10.1038/s41592-025-02929-3

Beam time: 1/10x Rescan ratio: 1:18 Error reduction: 3.86x
EM: 100ns 100ns 100ns & 2500ns 2500ns
Net: FastEM2B FusedEM2B FusedEM2B SlowEM2B

Error: 0.025 0.0064=0.002+0.0045 Reference

S el g AN
Apf L ; 2

3
(o

Extended DataFig. 3| Composite EM images fusing short and long dwell time instance segmentation is assessed in terms of the Variation of Information (V1)
regions are better segmented compared to short dwell time images. We tested compared to the segmented reference image, where Vlis composed of a merge
inthe mouse cortex datasets whether replacing short dwell time error-prone and spliterror terms as in equation (1).

regions with longer dwell time scans improves the ability to segment. Error of the

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02929-3

C. elegans Effective dwell time: 400 ns

- €leg Initial dwell time: 300 ns
Rescan dwell time: 800 ns

04 Recan rate: 12.5%

ool P< 0.00263,

N=123, ;=0.032

0 - -

> Mouse Effective dwell time: 75 ns
= Initial dwell time: 50 ns
re) Rescan dwell time: 150 ns
© Recan rate: 16.7%
0o04
o -
S ,| p<137e-09,
Q N=219, 1=0.011
= 0
(@]
-
| &
w Human Effective dwell time: 75 ns
Initial dwell time: 50 ns
Rescan dwell time: 300 ns
Recan rate: 8.33%
0.4
ool P< 2.41e-06,
“| N=62, 4=0.016
0 n 1 =2y =l ]
0 0
Q@

errorin SmartEM.

Vi(Traditional,)-VI(SmartEM,)

Extended DataFig. 4 | Distribution of segmentation error differences
(standard minus SmartEM) across datasets/species. The C. elegans nerve

ring (top), mouse cortex (middle), and human temporal lobe (bottom) - each
collected using ahomogeneous and a time-matched SmartEM dwell time.
Parameter settings for each case (effective dwell times, initial dwell times, rescan

dwell times, and rescan rates) are shown in the panel titles. Each distribution
plots the Variation of Information (VI) error from the standard pipeline minus
that from SmartEM for a collection of N images; positive values indicate lower

Nature Methods


http://www.nature.com/naturemethods

Article https://doi.org/10.1038/s41592-025-02929-3

0.5 um g L e Far w 0 5 e ~ s
Extended Data Fig. 5| Synapse detection in ultrafast (25 ns), fast (75 ns) and slow (800 ns) dwell time. The output of EMINCLUDE is depicted for multiple dwell times.
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Extended Data Fig. 6 | Data-aware imaging of synapses at long dwell time. SmartEM takes a short dwell time image (50 ns/pixel), predicts locations that contain
synapses, and rescans these regions at long dwell time (1200 ns/pixel). The blue overlay presents synapse predictions by EMINCLUDE. Yellow outlines represent
locations for rescan based on dilation of EMINCLUDE predictions.
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Extended DataFig. 7| Examples ofimage homogenization by IMAGEHOMOGENIZER. Left column: composite EM with two dwell times (75 ns/pixel and 600 ns/pixel).

Middle column: homogenized EM from composite EM. Right column: slow EM (600 ns/pixel). Red arrows indicate the locations with slow dwell time of 600 ns/pixel in
composite EM.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  We used Thermo Fisher "AutoScript 4" API combined with Python and MATLAB to control the microscope. Collections was aided with in-house
trained models in MATLAB and PyTorch.

Data analysis We analyzed the data in MATLAB and Python.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All SmartEM datasets and machine learning models are publicly available through a \href{https://doi.org/10.60533/boss-2023-4w35HKBossDB Project Page} (The
Brain Observatory Storage Service and Database) \citep{hider_bossdb}.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We collected datasets from three organisms and segmented them across an entire wafer. For each specimen we conducted analyses within
sample across different separated areas, randomly picked from all sections. The number of sections used to derive the statistics was chosen
based on the imaging time and the speedup analysis parameters, both are slow procedures due to the slow pace of EM imaging and the large
augmentation of the ML models. In any event, we made sure N was larger than the number of sections but without repeatidly sampling from
the same section to maximize variability.

Data exclusions  Blurry images were excluded from the speedup analysis or areas that do not contain neuropil that is relevant for the connectomics question.
Replication Our data are available for segmentation experiments, and wafers can be re-imaged for reproducibility purposes.
Randomization  We heavily relied on randomization both of the section ID and the X/Y location within a section.

Blinding Investigators who rejected blurry images were not aware of the effect these regions would have on speedup.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

X[ ] Antibodies [] chip-seq
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals We used a male C. elegans, N2 Bristol strain. Other data in this study were based on animal preparation from previous studies.
Wild animals N/A
Reporting on sex Sex was not considered.

Field-collected samples  N/A

Ethics oversight No ethical guidance needed for C. elegans.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Authentication N/A
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