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Connectomics provides nanometer-resolution, synapse-level maps of neural 
circuits to understand brain activity and behavior. However, few researchers 
have access to the high-throughput electron microscopes necessary to 
generate enough data for whole-brain or even whole-circuit reconstruction. 
To date, machine learning methods have been used after the collection of 
images by electron microscopy (EM) to accelerate and improve neuronal 
segmentation, synapse reconstruction and other data analysis. With the 
continual computational improvements in processing EM images, acquiring 
EM images will become the rate-limiting step in automated connectomics. 
Here, in order to speed up EM imaging, we integrate machine learning into 
real-time image acquisition in a single-beam scanning electron microscope. 
This SmartEM approach allows an electron microscope to perform data-aware 
imaging of specimens. SmartEM saves time by allocating the proper imaging 
time for each region of interest—first scanning all pixels rapidly and then 
rescanning more slowly only the small subareas where a higher quality signal is 
required. We demonstrate that SmartEM achieves up to an ~7-fold acceleration 
of image acquisition time for connectomic samples using a commercial 
single-beam SEM in samples from nematodes, mice and human brain. We 
apply this fast imaging method to reconstruct a portion of mouse cerebral 
cortex with an accuracy comparable to traditional electron microscopy.

Serial-section electron microscopy is widely used to reconstruct  
circuit wiring diagrams in entire brains of small animals like Cae-
norhabditis elegans, Drosophila and zebrafish1–5 and brain regions  
in mammals6–11. Comparing the growing numbers of connectomes 
of animals with different genetic backgrounds, life experiences  
and diseases will illuminate the anatomical nature of learning, mem-
ory and developmental plasticity, the nature of brain evolution and  
the kinds of anatomical abnormalities that cause neuropathology  
and disease12–16.

To achieve wide-scale deployment for comparative connectomics, 
data acquisition and analysis pipelines need to become more widely 
available17. At present, connectome datasets are mostly acquired by 
the few laboratories and institutions equipped with specialized and 
expensive high-throughput electron microscopes such as the Transmis-
sion Electron Microscopy Camera Array 2, GridTape or the Zeiss 61- or 
91-beam scanning electron microscope (SEM)16,18,19.

Until recently, dataset acquisition had not been a limiting  
factor in connectomics20. A more substantial bottleneck had been data 
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an objective assessment of segmentation accuracy of images collected 
with different dwell times. We adapted EM2B to SEM images taken with 
different dwell times. We automatically segmented 256 randomly 
selected 2,048-pixel × 1,768-pixel regions taken from the 94-section 
sample imaged at 14 different dwell times. Automatic segmentation 
with ultrafast dwell times (25 ns per pixel) produced frequent merge 
and split errors compared to automatic segmentation of the same 
regions with overly slow dwell times (1,200 ns per pixel; Fig. 1a).

To quantify segmentation accuracy, we calculated the variation 
of information (VI)33 between each automatically segmented region at 
each shorter dwell time and the segmentation obtained at the longest 
dwell time (Fig. 1b). Segmentation accuracy increased with longer dwell 
times and saturated at 800–1,000 ns per pixel, consistent with the 
rule-of-thumb practice in choosing the dwell times for connectomics. 
At 25 ns per pixel, acquisition speed is 40× faster than at 1,000 ns per 
pixel, but with lower segmentation accuracy.

Brain tissue is typically heterogeneous, with some image regions 
easier and others harder to segment accurately (Fig. 1c,d). Thus, seg-
mentation accuracy varied substantially from region to region. For 
slow dwell times (1,000 ns per pixel), segmentation accuracy was 
narrowly distributed around small VI, indicating fewer segmentation 
errors. For ultrafast dwell times (25 ns per pixel), segmentation accu-
racy was broadly distributed. Some regions exhibited the same low VI 
with both ultrafast and slow dwell times (‘easy’-to-segment regions). 
In contrast, some regions exhibited drastically higher VI for ultrafast 
dwell times than slow dwell times (‘hard’-to-segment regions; Fig. 1c). 
For each region, we determined the minimum dwell time to reach the 
same segmentation accuracy as that produced by the longest dwell 
time. We observed a broad distribution of minimum dwell times across  
pixel regions in this mouse cortex sample. Most 2,048-pixel × 1,768-pixel 
regions are accurately segmented with dwell times ≤150 ns per pixel, 
but some (~25%) required longer dwell times. Minimum dwell times  
exhibited a broad-tailed distribution from 50 to 1,200 ns per  
pixel (Fig. 1d).

Challenges in implementing SmartEM
We sought a SmartEM pipeline that could both identify and adapt 
to the spatial heterogeneity in the segmentation accuracy of brain  
tissue at various dwell times. Implementing such a pipeline on an  
SEM poses several challenges. First, the SEM needs to automatically 
identify regions likely to produce segmentation errors when acquired 
rapidly. Next, the SEM needs to slowly rescan pixel neighborhoods 
within and around these ‘error-prone’ regions to improve segmentation. 
Finally, the pipeline needs to accurately segment composite images 
built from the initial rapidly acquired images fused with rescanned 
error-prone regions. Below, we describe the solutions to these chal-
lenges that form our SmartEM pipeline.

To identify error-prone regions in rapidly acquired images, we 
developed a ML algorithm to run on the microscope’s support com-
puter. To take a particular example (Fig. 2a), a short-dwell-time scanned 
image produced a segmentation merge error that would have been 
avoided with a longer-dwell-time scan of the same tile. By use of a 
neural network (ERRNET; see below), it was possible to identify the 
error-causing location in the rapidly acquired image and specify the 
error-prone region to be rescanned that would remedy segmentation 
errors. This region includes the poorly defined cell membranes caus-
ing the merge error. ERRNET can operate in real-time within the SEM 
computer when equipped with a commodity GPU. This network runs 
faster than the short scan image acquisition (<100 ns per pixel) and can 
be further sped up by parallelization with multiple GPUs.

To use the prediction of error-prone regions during real-time SEM 
operation, we modified the scanning procedure of the microscope to 
rescan error-prone regions at long dwell times right after the short scan. 
In addition to rescanning error-prone regions, neural networks can be 
trained for data-aware rescan of additional regions of interest, such as 

analysis: segmenting serial-section electron micrographs to recon-
struct the shape and distribution of nerve fibers, identify synapses 
and map circuit connectivity. The most substantial bottleneck had 
been manual human proofreading5. However, recent improvements  
in machine learning (ML) and image analysis21–28 have sped data analy-
sis and reduced the need for human proofreading, creating a need  
for faster image acquisition. The field needs more electron microscopes 
to deliver datasets as fast as they can now be analyzed. One way to meet 
this need is to enable widely available electron microscopes, such as 
more affordable single-beam SEMs, to collect connectomic datasets.

On a single-beam SEM, acquisition speed is dictated by the dwell 
time that the electron beam spends on each pixel. For connectomics, 
this is typically ≳1,000 ns per pixel to ensure high-contrast tissue imag-
ing. In comparison, the time spent moving the beam between pixels 
is negligible, as modern SEMs use electrostatic scan generators for 
rapid beam deflection29,30. To accelerate an SEM for connectomics, one 
must therefore reduce the total dwell time without losing information 
essential for determining the wiring diagram.

The salient measure of image accuracy for connectomics is neu-
ronal segmentation: being able to correctly identify each neuron’s 
border (membrane boundary and extracellular space) and correctly 
identify each synapse. In standard SEM, a long, uniform dwell time is 
used to achieve the high signal-to-noise per pixel needed for accurate 
segmentation. This creates a fundamental trade-off: rapid imaging can 
miss critical information. Although post-acquisition methods such as 
denoising or upsampling can improve images31,32, they are limited by 
the original information content and cannot unambiguously create 
data that was not first acquired.

Our solution to the problem of missing information in a rapidly 
acquired image is to recover information during real-time micro-
scope operation. To do this, we developed SmartEM, a pipeline that 
uses an efficient machine learning algorithm to identify error-prone 
or high-salience regions (such as synapses) from an initial, rapidly 
acquired image and then immediately rescans those regions at a longer 
dwell time. The SmartEM pipeline is effective in any context where 
images exhibit high spatial heterogeneity in segmentation accuracy 
as a function of imaging time: a fundamental characteristic of brain 
images where nerve fibers and synapses can vary in size and density  
from region to region. By creating a composite image, using longer 
dwell times only where needed, SmartEM achieves the accuracy of a uni-
form long-dwell-time acquisition with nearly the speed of a short-dwell- 
time scan. Our experiments yielded between ~5–7× speedup on  
three different connectomic datasets using two widely available SEMs, 
demonstrating a method to accelerate imaging not only in biology  
but also in material sciences and electronic circuit fabrication.

Results
Suitability of adaptive dwell times for connectomics
To establish the rationale for our connectomics pipeline by SEM—auto-
matically applying short dwell times to most areas that are ‘easy’ to 
segment and long dwell times to fewer areas that are ‘hard’ to segment—
we quantitatively tested how spatial heterogeneity in representative 
mammalian brain images affects segmentation accuracy with differ-
ent dwell times. To perform these tests, we used a recent high-quality 
sample comprising 94 sections of mouse visual cortex14. We reimaged 
these 94 sections at 4-nm-per-pixel resolution using a Verios 5 HP SEM 
from Thermo Fisher Scientific at a range of fixed dwell times from  
25 to 1,200 ns per pixel.

We note that when these images were originally acquired in a 
previous study using multibeam SEM, the dwell time was 800 ns per 
pixel14. This dwell time was determined by an expert operator and is 
close to the 800–1,000 ns per pixel needed for maximal segmentation 
accuracy for this dataset (Fig. 1a,b).

Our segmentation algorithm—mapping EM images to border pre-
dictions (EM2B) followed by a standard watershed transform—provided 
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synaptic clefts for applications in connectomics. We show data-aware 
rescans where the microscope is guided to retake regions around 
synaptic clefts that are predicted from an initial short scan image of 
a section of mammalian cortex (Fig. 2b). SEMs with electrostatic scan 
generators are able to conduct efficient and rapid rescans without 

wasted time in moving the electron beam29,30. When ERRNET and rescan 
software are seamlessly integrated within SEM computer hardware, the 
total time spent acquiring an image is the total number of pixels times 
the short initial dwell time plus the total number of rescanned pixels 
times their long dwell time.
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Fig. 1 | The effect of the beam’s dwell time on the ability to segment the EM 
into neuronal elements. a, Scanning the same EM tile with different dwell 
times. Short-dwell-time scans result in segmentation errors (red squares) that 
are resolved by longer scans (green squares). b, The segmentation quality of the 
same images used in a are represented by × markers, alongside the distribution 
of segmentation qualities of 256 images (scatter and boxes) for 13 dwell times, 
from 25 to 1,000 ns per pixel, calculated relative to a reference image taken at 
1,200 ns per pixel. Segmentation error is quantified by VI; y axis). Box plots show 
the median (center line); 25th–75th percentiles (box) and whiskers extending 

to the most extreme points within 1.5 × interquartile range. c, Comparison of 
segmentation error (VI) distributions for slow (1,000 ns) and ultrafast (25 ns) 
dwell times. Two example images, both taken at 25 ns per pixel, are shown, 
corresponding to a high-error case (top) and a low-error case (bottom) from 
the wide distribution of the ultrafast scan. d, Distribution of the minimum dwell 
time required to achieve adequate segmentation quality for 256 different image 
regions. The x axis represents the dwell time in nanoseconds per pixel, and the y 
axis represents the proportion of regions that meet the quality threshold at that 
specific dwell time.
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After image acquisition, a smart microscopy pipeline generates a 
complete rapidly acquired image and set of rescanned regions of each 
sample acquired at longer dwell times. Composite images are produced 
by substituting pixels from rescanned regions into corresponding 
locations in the initially rapidly acquired images, resulting in images 
with pixels of multiple dwell times. Previous segmentation algorithms 
for connectomics have dealt with a single prefixed dwell time22,24,25,34—
these algorithms generalize poorly to homogeneous images taken at 

different dwell times or to heterogeneous images composed of regions 
taken at different dwell times. The smart microscopy pipeline demands 
new algorithms to accurately segment composite images where differ-
ent regions are obtained at different dwell times.

We developed a data-augmentation training procedure technique 
for a neural network with a U-Net35–38 architecture (FUSEDEM2B) to 
accurately detect borders in an image with heterogeneous dwell times 
as well as if the image was taken with a single uniformly applied dwell 
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Fig. 2 | Smart microscope challenges. a, ML detecting error-prone regions. An 
erroneous segmentation of a rapidly acquired image (25 ns per pixel) with a red 
arrow indicating the location of a merge error between two neurons (N1, N2). 
Acquiring the same image at a long dwell time of 1,200 ns per pixel enhances the 
neuronal boundary (middle). The output of the ERRNET neural network that 
was trained to predict segmentation errors from EM is shown on the right in red 
(25 ns per pixel). The yellow outline is a window around the predicted error to 
provide further context needed for downstream correction. b, SEM rescanning 

any subregion. The SEM captures any part of an image at different dwell times, 
homogeneously at short dwell times (left; 25 ns per pixel), homogeneously at 
long dwell times (middle; 3,000 ns per pixel) or homogeneously at short dwell 
times with a subregion taken at long dwell times (right; 25 and 3,000 ns per pixel). 
Here, the yellow outline for the long-dwell-time subregion contains a synaptic 
cleft. c, ML segmenting multi-dwell-time images. Predicting neuronal borders 
from fused EM images using FUSEDEM2B.
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time (Extended Data Fig. 1). We show an example image with multiple 
dwell times, where long-dwell-time scanning occurs arbitrarily within 
an S-shaped region surrounded by short scanning (Fig. 2c). The borders 
predicted by FUSEDEM2B are unperturbed when crossing between 
regions taken with different dwell times.

Thus, the challenges in building a smart microscopy pipeline are 
met by extensively using ML in both guiding image acquisition and 
image analysis.

The smart microscopy pipeline
We developed an integrated smart pipeline that meets the above  
challenges and illustrate how the pipeline operates on a small tile from 
the mouse cortex dataset14 (Fig. 3). The SmartEM pipeline first estab-
lishes a target segmentation quality by determining the minimum 
standard dwell time required for maximal accuracy (for example, 
800–1,000 ns per pixel for the mouse cortex dataset). The design and 
implementation of the core components of SmartEM are described 
below in detail.

To further reduce imaging time, we adjusted the pixel dwell time 
locally based on maintaining segmentation accuracy. Most image 
regions can be segmented with full accuracy after scanning with a short 
dwell time. Additional dwell time was selected only for those regions 
that required longer imaging to segment properly. This selection 
was accomplished via a neural network (ERRNET) that learned what 
regions required a longer dwell time after scanning whole images 
with a short dwell time. ERRNET learns the features of error-causing 
locations in raw short-dwell-time images that produce segmenta-
tion differences—erroneous merges or splits—in comparison to 
long-dwell-time-acquired images.

To assemble the ‘ground truth’ to train ERRNET, the microscope 
first takes a large set of images from random locations in the speci-
men at multiple dwell times (for example, from 25 to 1,200 ns per 
pixel). These images are segmented to distinctly label every contiguous 
neuron cross-section. Automatic labeling can be done using border 
probabilities, a seeding procedure and a standard region-growing 
algorithm such as watershed39. Segmented images at all dwell times 
are compared to reference segmented images taken with the longest 
dwell time (1,200 ns per pixel for the mouse cortex dataset in Fig. 1a,b, 
longer than needed for fully accurate segmentation with SLOWEM2B). 
To automatically learn segmentation discrepancies between short- and 
long-dwell-time images, we developed a method to produce a binary 
error mask that defines the morphological differences between two 
segmented images based on the VI clustering metric33. We trained 
ERRNET to predict error-causing regions in short-dwell-time images, 
as shown in Fig. 3b. We used the VI metric to detect objects that are 
morphologically different between segmentations of short- and 
long-dwell-time images and then mapped the borders that differ for 
these objects (Extended Data Figs. 1 and 2)33. We noted that all segmen-
tation errors in short-dwell-time images can be repaired (that is, leading 
to segmentation identical to long-dwell-time images) by selectively 
replacing only regions surrounding discrepancy-causing locations 
in short-dwell-time images with corresponding regions taken from 
long-dwell-time images.

In real-time operation, the SEM must take an initial rapidly 
acquired image, execute ERRNET to detect error-prone locations, 
define a rescan mask by padding error-prone locations to capture 
enough context to improve segmentation accuracy and then immedi-
ately rescan all error-prone regions using longer dwell times (Fig. 3c).

Technique evaluation
We developed our SmartEM pipeline to expedite connectomics recon-
struction on two widely available SEMs, the Verios 5 HP and the Magellan 
400L, both from Thermo Fisher Scientific. We quantitatively estimate 
the practical improvement in quality and speed of this pipeline for 
connectomics in a variety of tissues, including reimaging a previously 

studied mouse cortex14, a previously studied human temporal lobe H01 
dataset16 and a newly prepared male C. elegans dataset.

One premise of the smart microscopy pipeline is that auto-
matically detecting error-prone regions and replacing them with 
longer-dwell-time pixels will reduce segmentation errors. To test this 
premise, we compared the accuracy of a segmentation pipeline trained 
to deal with short-dwell-time images (FASTEM2B at 100 ns per pixel) to 
a SmartEM pipeline trained to deal with composite images made from 
short and long dwell times (FUSEDEM2B at 100 ns per pixel and 2,500 ns 
per pixel). The performance of these networks was compared to the 
standard segmentation pipeline with long-dwell-time image acquisi-
tion (SLOWEM2B at 2,500 ns per pixel). For fair comparison, we used 
the same long dwell time for the rescanning in the SmartEM pipeline 
and for the uniform scan in the standard pipeline. We found that using 
these dwell times, SmartEM is approximately 5× faster than the stand-
ard segmentation pipeline with long-dwell-time image acquisition and 
approximately 2–3× more accurate (based on VI) than the standard 
pipeline operating quickly (100 ns per pixel) (Extended Data Fig. 3). 
Thus, fusing long-dwell-time pixels into a rapidly acquired image can 
improve segmentation accuracy.

Another premise of the SmartEM pipeline is that the additional 
time devoted to rescanning part of an image yields a greater improve-
ment in segmentation accuracy than distributing the same extra time 
across all pixels with a uniform dwell time, as shown in Fig. 4a. To test 
this premise, we used a ‘standard’ pipeline with competitively fast 
settings: 400 ns per pixel for C. elegans and 75 ns per pixel for the 
mouse and human cortex datasets. We then compared these images to 
a SmartEM pipeline configured to match the same overall acquisition 
time by combining an initial short scan and a targeted longer rescan 
(Extended Data Fig. 4). For the three datasets, the initial SmartEM 
dwell time was set to 300, 50 and 50 ns per pixel, and the rescan dwell 
time was set to 800, 150 and 300 ns per pixel, respectively. In each 
case, we adaptively selected 12.5%, 16.7% and 8.33% of the most error- 
prone regions for rescanning to ensure that total acquisition time 
matched that of the standard pipeline. The procedure for select-
ing these SmartEM parameters for imaging is described below. We 
compared the VI from 123, 219 and 62 segmented image tiles of each 
pipeline to reference images taken at a long dwell time and found 
that SmartEM produced substantially fewer errors than the standard 
pipeline (sign tests and distributions of VI differences are in Extended  
Data Fig. 4).

We considered two scenarios for the large-scale collection of a 
connectome dataset. The first scenario involves a fixed imaging time 
budget to acquire a selected data volume at the selected pixel resolution. 
Here, the task is to intelligently allocate a fixed imaging time to opti-
mize segmentation accuracy. The second scenario involves matching 
a fixed image quality to acquire a volume. Here, the task is to determine 
SmartEM parameters (initial dwell time, rescan dwell time and rescan 
rate) that maintain the quality of a given traditional dwell time while 
minimizing the required imaging time. Below we analyze both scenarios.

Scenario 1: Optimized accuracy with a fixed imaging time budget. 
In Scenario 1, we fix the total imaging time and task SmartEM with 
optimizing parameters (initial/rescan dwell times and rescan rate) to 
maximize segmentation accuracy.

We present the results of parameter optimization for different 
effective dwell times (smart imaging time) and across multiple datasets 
(Fig. 4b). This optimization links any effective dwell time (achieved by 
optimizing the VI for different Tinitial, Trescan) to an accuracy-equivalent 
standard homogeneous dwell time. For example, an effective dwell 
time of 150 ns per pixel in the mouse cortex dataset already attains the 
maximal quality using a specific set of initial, rescan dwell times and 
rescan rates that are determined per tile. This quality is comparable to 
standard homogeneous scan at 800–1,000 ns per pixel.

We show the time saved by SmartEM compared to standard  
microscopy (Fig. 4b). For the mouse cortex dataset, the maximal saving 
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compared to standard EM is achieved when SmartEM is used at an effec-
tive dwell time of ~125 ns per pixel, which corresponds to an accuracy 
akin to ~690 ns per pixel by the standard pipeline. This effective dwell 
time produces images at a speedup of ~6× with nearly maximal pos-
sible segmentation accuracy (Fig. 1). The same analysis shows that the  
C. elegans male nerve ring can be acquired at a speedup of ~5× and the 
human temporal lobe at a speedup of approximately ~7×.

We estimate the time to replicate the accuracy of SmartEM using 
standard microscopy on 1 terapixel of tissue (Fig. 4b). For the mouse 
cortex, the SmartEM microscope running for 42 h of continuous imag-
ing achieves the same quality as a standard pipeline running for 212 h.

Scenario 2: Minimizing imaging time with fixed image quality. In 
the second scenario, a certain volume needs to be segmented while 
minimizing imaging cost. The total imaging time is not fixed in advance, 
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Fig. 3 | The SmartEM pipeline. a, Smart multistep imaging compared to 
standard imaging. Top: in standard EM, the sample is first scanned with a long 
dwell time and then segmented. Bottom: in the SmartEM pipeline, the sample 
is first scanned at a short dwell time, and error-prone regions are detected and 
rescanned and then segmented. b, For training, SmartEM requires aligned stacks 
of high-quality (long-scan) images and low-quality (short-scan) images. A border 
detector, FUSEDEM2B (blue), is trained on this dataset to reproduce the high-
quality results of a border detector that runs only on the long-scan images.  

Once FUSEDEM2B is trained, the border predictions between the short and 
long dwell times are compared (topology comparison), and a binary error map 
featuring the differences between the two predictions is produced. A second 
network, ERRNET (red), is trained to predict this error map from the border 
predictions of the short-dwell-time images. c, For acquisition, SmartEM first 
performs a short scan. The trained networks FUSEDEM2B and ERRNET are used 
to obtain a rescan mask. This region is rescanned at a longer dwell time, resulting 
in a fused EM image with better segmentation quality.
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but the quality of the SmartEM images must still meet a standard. In 
practice, SmartEM acquires the volume in a way that achieves segmen
tation results comparable to standard EM but in substantially less time. 
First, the operator determines the dwell time required to achieve a 
specific quality under standard homogeneous scanning, which can  
be obtained from the SmartEM pipeline’s estimate of a minimum  
homogeneous dwell time (Fig. 1). Once the image quality is effectively 
set by selecting a reference dwell time for uniform scanning, SmartEM 
then uses its adaptive approach to minimize the overall imaging time 
while maintaining comparable segmentation accuracy.

We analyzed the expected imaging time of SmartEM across the 
three datasets by applying the following procedure separately to each 
tissue. We first acquired images at multiple homogeneous dwell times 
ranging from 25 to 1,200 ns per pixel from the same areas. Next, we 

applied SmartEM, using the same error detector (ERRNET) and border 
prediction model (FUSEDEM2B), to produce composite dwell-time 
images derived from different combinations of initial dwell time, rescan 
dwell time and rescan rate. To match each standard homogeneous dwell 
time to an effective SmartEM dwell time, we identified the shortest 
composite dwell time that produced segmentation results statistically 
similar from those of the standard dwell time across tiles. We show 
the relationship between the targeted standard dwell time and the 
SmartEM dwell time with comparable accuracy (Fig. 4c).

For the mouse cortex, the highest possible quality of standard 
EM at 800–1,000 ns per pixel (Fig. 1) is with a smart effective dwell 
time of ~149–155 ns per pixel. This ~5.4–6.5× speedup from standard  
to SmartEM is achieved by selecting the percentage of rescanned  
pixels in each image tile and letting ERRNET determine rescan locations. 
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Fig. 4 | SmartEM acquisition time. a, Examples of SmartEM acquisition across 
three datasets: C. elegans nerve ring, mouse somatosensory cortex and human 
temporal lobe, visually compared to traditional EM imaging at the same average 
dwell time. b, Accuracy optimization for desired beam time. In the first imaging 
scenario, the imaging time is constrained by a fixed time budget, which, given a 
volume size and pixel resolution, determines the average dwell time (beam  
time per pixel). The task is to identify SmartEM parameters (initial dwell time, 
rescan dwell time and rescan rate) that optimize segmentation accuracy.  
(i), For each targeted effective (SmartEM) dwell time (x axis), we compute the 
optimal SmartEM parameters and determine the corresponding standard 
(homogeneous) dwell time (y axis) required to achieve the same segmentation 

accuracy. Error bars represent the mean ± 1 s.d. for random tiles from neuropil 
area (worm, N = 123; human, N = 62; mouse, N = 219). (ii), The resulting speedup 
(ratio of the homogeneous dwell time to the SmartEM dwell time) from (i). 
(iii), The data from (i) and (ii) illustrated for a fixed volume of 1 TB at 4 nm per 
pixel with a slice thickness of 30 nm. c, In the second imaging scenario, the 
desired EM quality is set by a standard pipeline’s dwell time, and the goal is to 
identify SmartEM parameters that achieve equivalent segmentation quality 
in minimal imaging time. Near-maximal segmentation quality (comparable to 
homogeneous 1,000 ns-per-pixel scanning) is attained at roughly 207 ns per 
pixel (C. elegans, blue tick), 155 ns per pixel (mouse, red tick) and 154 ns per pixel 
(human, orange tick).
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The C. elegans male nerve ring, in comparison to standard EM at  
800–1,000 ns per pixel, can be acquired with a smart dwell time of 
~182–207 ns per pixel (~4.4–4.8×). The human temporal lobe, compared 
to standard EM at 500–1,000 ns per pixel, can be acquired at a smart 
time of ~134–154 ns per pixel (~3.7–6.5×).

Imaging and reconstruction of mouse cortex with SmartEM
We applied SmartEM to densely reconstruct multiple portions of 
mouse cortex tissue. Two volumes of sizes 68 × 60 × 3 μm3 (Fig. 5a) and 
118 × 102 × 3 μm3 (Fig. 6) and a section of size 205 × 180 μm2 (Fig. 5b–j), 
were imaged at 4-nm-per-pixel resolution.

For the first volume acquisition, we used an initial dwell time of 
75 ns per pixel, rescan dwell time of 800 ns per pixel and rescan rate of 
10%, providing an effective dwell time of

Teffective = 75 + 0.1 × 800 = 155 ns per pixel.

This average dwell time for SmartEM corresponds to a standard dwell 
time of ~1,000 ns per pixel for traditional microscopy (see ‘Technique 
evaluation’ section). This acquisition tested the ability to acquire, stitch 
and align in three-dimensional (3D) serial-section volumes.

For the second volume acquisition, we employed even more com-
petitive SmartEM parameters with an initial dwell time of 75 ns per 
pixel, rescan of 800 ns per pixel and a rescan rate of 3%, providing an 
effective dwell time of

Teffective = 75 + 0.03 × 800 = 99nsper pixel.

For this volume, a comparison between the coregistered EM images  
of short dwell time and composite dwell time is available in  
neuroglancer40. This acquisition tested whether highly competitive 
SmartEM imaging parameters would support accurate automated 
neuronal reconstruction in 3D (described below).

To test the scalability of SmartEM to larger imaging grids, we 
acquired a section of size 205 × 180 μm2 composed of 30 × 30 individual 
tiles with an initial dwell time of 75 ns per pixel, a rescan of 600 ns per 
pixel and a rescan rate of 10%, providing an effective dwell time of

Teffective = 75 + 0.1 × 600 = 135 ns per pixel.

As mentioned above, this effective dwell time corresponds to the maxi-
mal possible speedup of SmartEM for this dataset, producing images 
with segmentation quality akin to standard EM at ~1,000 ns per pixel. 
We depict the segmentation of pipeline outputs in Fig. 5b–d (left panel 
in neuroglancer).

We also assessed the ability to detect synapses on short-dwell-time 
images (25–1,000 ns per pixel) and applied this detection to the 
above initial scan of 75 ns per pixel with results that are comparable to 
long-scan imaging, as shown in Fig. 5e,f and Extended Data Figs. 5 and 
6. We show the ability of SmartEM to detect and exclude regions of no 
interest, where cytoplasm far from the membrane is detected from 
the initial scan, allowing SmartEM to force skipping of long-dwell-time 
scanning from these regions (Fig. 5g,h). We demonstrate the ability 
to translate the fused images to uniform-looking EM tiles with quality 
akin to long-dwell-time imaging (Fig. 5i,j and Extended Data Fig. 7; 
visualized in neuroglancer).

To validate SmartEM for connectomics, we tested whether the 
resulting image volumes support accurate 3D automated reconstruc-
tion and proofreading. We first focus our analysis to the problems of 
neuron reconstruction. We applied a lightweight 3D neuron segmenta-
tion algorithm to the mouse cortex volume acquired at a competitive 
average dwell time of 99 ns per pixel (visualized in neuroglancer). We 
assessed the quality of resulting SmartEM image volume with auto-
mated reconstruction of fine processes and expert manual annotation 
(Fig. 6b), as described below.

Connectomes can contain ‘split’ errors (fragmenting the volume of 
one cell) or ‘merge’ errors ( joining the volume of two cells). Because a 
comprehensive analysis of merge errors typically requires larger recon-
structed volumes to assess metrics such as error-free run-length, we 
qualitatively inspected and verified that none of the large segmented 
objects was implicated in catastrophic merge errors (Fig. 6c). Spines 
are the fine processes that protrude from dendrites and contain syn-
apses. To further benchmark SmartEM performance quantitatively, 
we studied split errors in the 3D reconstruction of dendritic spines, 
a challenging feature for automated reconstruction. We randomly 
selected three dendrites (Fig. 6b). We counted spines that were fully 
automatically reconstructed without split errors and spines with split 
errors. Expert human annotators verified every correct reconstruction 
and verified that every split error was correctable with proofreading. 
The percentage of correct spines was approximately 58%, 53% and 75% 
in the three dendrites. The combined percentage of correct spines 
was 65%, comparable to the rate of correct spine capture in recent 
automated reconstruction of human cortex (67%)16.

In addition to validating the quality of automated neuron recon-
struction in the mouse cortex volume, as described above, we also 
trained a neural network to automatically reconstructed synapses and 
validated the results against expert manual annotation (Fig. 6d and 
neuroglancer). We measured object-wise synapse precision, recall and 
the F1-score in 3D. When evaluated on the test dataset, we obtained a 
precision of 93.2%, a recall of 94.1% and an F1-score of 93.7%, compa-
rable to state-of-the-art performance on traditional EM volumes41,42.

Discussion
Recent advances in ML will likely shift the bottleneck in connectomics 
from image analysis to data acquisition. The SmartEM approach directly 
addresses this challenge by integrating computational intelligence into 
single-beam SEMs. Implemented on commodity hardware, SmartEM 
transforms widely available single-beam SEMs into high-throughput 
platforms with minimal hardware modification. Beyond accelerating 
imaging acquisition, SmartEM’s computational framework is adaptable 
to different microscopy modalities, enabling intelligent, data-aware 
imaging in various scientific fields (see below).

A strength of SmartEM is its flexibility. The pipeline’s core  
components—error prediction with ERRNET, real-time targeted rescan-
ning and segmentation of composite images with FUSEDEM2B—are 
modular. For instance, ERRNET can be trained using any segmentation 
algorithm to detect errors based on user-defined metrics, not just 
the VI used here. This adaptability allows laboratories to integrate 
their preferred analysis tools and tailor the pipeline to diverse sample 
preparations and scientific questions.

SmartEM can improve the efficiency and accuracy of SEM image 
acquisition in any context where it is beneficial to selectively adjust 
imaging time across different regions. Analogous to foveal vision43, 
SmartEM performs a rapid, wide-field scan and then selectively rescans 
only the information-critical areas at higher fidelity. SEM is widely 
used in materials science and manufacturing, where samples often 
have regions varying substantially in detail and complexity. These 
applications, as well as others where specific structural features can 
be predicted but not accurately reconstructed from an initial rapid 
scan, are suited to SmartEM. Imaging approaches that take advantage 
of electron beam-sensitive materials, such as cryo-EM, could also ben-
efit from the selective rescanning of SmartEM. Sparsely distributed 
structures or molecules of interest can first be rapidly identified and 
then selectively rescanned at longer dwell time, reducing overall beam 
exposure while enhancing image quality.

Although we focused on neuronal reconstruction for connectom-
ics, SmartEM was also adapted to selectively rescan high-quality images 
of salient structures such as chemical synapses, providing morpho-
logical reconstructions without substantial increases in total imaging 
time. Likewise, SmartEM can be readily adapted for applications in cell 
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biology or pathology by selectively recognizing and rescanning other 
sparse but biologically important structures, such as mitochondria or 
other organelles.

The pipeline can also be trained to increase efficiency by exclud-
ing regions of non-interest from rescans. For example, in invertebrates 
like C. elegans, where neural tissue constitutes a small fraction of a 
cross-section, SmartEM can automatically focus imaging time on the 
nerve ring, eliminating the need for laborious manual annotation of 
regions of interest.

Instead of collecting serial sections on tape, one can use block-face 
imaging with serial tissue removal. One block-face approach, focused 
ion beam SEM (FIB-SEM), has distinct advantages over tape-based 

serial-section sample collection, including thinner tissue layers 
(4–8 nm) and better preservation of image alignment44. The primary 
disadvantage of FIB-SEM is its slow acquisition speed. SmartEM could 
mitigate this by accelerating the imaging step, enabling the collection 
of larger volumes in continuous runs and making block-face tech-
niques like FIB-SEM and serial block-face SEM45 more practical for 
large-scale connectomics. SmartEM is expected to provide greater 
speedup on block-face imaging because the imaging component is a 
larger part of the entire acquisition pipeline compared to serial-section 
SEM. Similar benefits will be obtained with other block-face imaging 
approaches such as serial block-face SEM where a diamond knife slices 
the specimen45.
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Fig. 5 | Segmentation of mouse cortex using SmartEM. a, Stitched and  
aligned SmartEM volume of size 68 × 60 × 3 μm3 (94 sections) (neuroglancer).  
b, Segmentation of a single stitched SmartEM section of size 205 × 180 μm2 using 
FUSEDEM2B and watershed transform (left panel in neuroglancer). c, Location of 
the highlighted region in b with respect to the total section. d, Detailed depiction 
of segmentation in the boxed region in c. e,f, Automatic detection of synapses 

(f) from a short-dwell-time image (e). g,h, Automatic detection of regions to 
be excluded (h) from a short-dwell-time image (g). i,j, An image (i) made of 
composite dwell times is stylized to appear akin to a homogeneous dwell time 
image (j). A comparison between composite dwell time and homogenized images 
is available in neuroglancer.
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Future improvements could yield even greater speedups. Lever
aging 3D context from adjacent sections could reduce redundant 
rescans27,46,47. In addition, intelligently adjusting spatial resolution  
for different regions of tissue could further optimize beam time.  
These strategies can establish fast single-beam SEMs as a powerful 
and accessible alternative to multibeam systems for connectomics.  
An active area of current research is accelerating the end-to-end pipe-
line by parallelizing the ML with imaging and using larger fields of 
view48. We note that commercial multibeam SEMs, with their multiple 
beams controlled synchronously, cannot directly leverage some of 
these SmartEM strategies. Nonetheless, our innovations could sub-
stantially accelerate single-beam SEMs, positioning them as a viable 
alternative to the currently used high-throughput electron micro-
scopes for connectomics.
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Methods
Segmenting composite images
The smart microscope should be able to analyze images composed 
from multiple dwell times (Figs. 1c, 2b,c, 3 and 5a–d). We tested whether 
replacing error-prone regions in a short-dwell-time image with regions 
taken from long-dwell-time images improves segmentation out-
comes. Extended Data Fig. 3 depicts the segmentation outcome of a 
short-dwell-time image taken at 100 ns per pixel segmented with a dedi-
cated 100 ns per pixel network FASTEM2B (Extended Data Fig. 3a,e) and 
by FUSEDEM2B (Extended Data Fig. 3b,f). The segmentation quality of 
these networks are similar (top panel; VI = 0.025 and VI = 0.022). In most 
scenarios, the network trained to deal with fused EM (FUSEDEM2B) pro-
duces better results than networks trained to handle a fixed dwell time, 
even if the input into the two networks consists of a single homogene-
ous dwell time. Extended Data Fig. 3c,g depicts the segmentation of an 
image where the error-prone regions were detected by an error detec-
tor and replaced with long-dwell-time pixels (2,500 ns). The error level 
is typically and substantially cut by ~3–4×. The 2,500-ns-per-pixel refer-
ence image and its segmentation are shown in Extended Data Fig. 3d,h. 
All error estimates based on VI shown in Extended Data Fig. 3 are pre-
sented as the sum of the merge-error term and split-error term.

Imaging procedure
The SEM is automated to acquire images of individual tiles of every 
specimen section that are eventually stitched and aligned to form a 
total image volume (Fig. 3). The microscope navigates through multiple 
specimen sections held on tape and defines every specimen region of 
interest (S-ROI). Each S-ROI is captured at high spatial resolution by 
multi-tile acquisition. To identify the S-ROI and automate stage position 
and rotation control, we used SEM Navigator, a custom interface akin to 
earlier WaferMapper software49. The list of S-ROIs is exported into a text 
file, which is subsequently processed by the SmartEM pipeline (coded 
in Python/Matlab) using the Thermo Fisher Scientific Autoscript pack-
age (https://www.thermofisher.com/us/en/home/electron-micro
scopy/products/software-em-3d-vis/autoscript-4-software.html). The 
SmartEM pipeline controls the microscope and moves to S-ROI and 
individual tile positions, controlling the entire acquisition sequence.

For all image acquisitions, we used the Ultra High Resolution imag-
ing mode with 4-nm-per-pixel spatial resolution and ~4-mm working 
distance. Image contrast was obtained using a back-scattered electron 
detector with 2,000-V stage bias. The initial short-dwell-time scan was 
obtained using the full-frame-acquisition Autoscript interface. The 
subsequent long-dwell-time rescan utilized the standard interface of 
Autoscript patterning.

To optimize image quality and tuning time for both short move-
ments between neighboring tiles and long movements neighbor-
ing sections, we customized sequences of various autofunctions. 
These autofunctions included auto-contrast/brightness, auto-focus, 
auto-stigmation, auto-focus/stigmation and auto-lens alignment.

Because we used different interfaces for the initial short-dwell-time 
scan and long-dwell-time rescan, an additional alignment procedure 
was necessary to achieve pixel-resolution precision in the rescan. The 
basic system configuration for the rescan acquisition is described  
in ref. 50.

When the rescan long dwell time was shorter than ~500 ns per 
pixel, an unavoidable artifact due to limited system response of the 
electron deflection system occurred at the edge of rescan regions. 
We excised this artifact by omitting a 1-pixel boundary from every 
rescan region.

Segmentation quality metric
To compare the segmentation quality of different samples, we used a 
VI metric33. In principle, all comparisons that we made in this study can 
be accomplished with other metrics of segmentation quality as long 
as they can be applied to two-dimensional (2D) images. We expect the 

choice of segmentation metric to have little effect as long as any metric 
assesses topological attributes similar to VI (that is, whether objects  
are split or merged). Our implementation of the VI running on  
CPU/GPU is available at https://pypi.org/project/python-voi/.

Using VI to build ERRNET. To train the error detectors, we needed  
to locate the specific regions that contribute to the largest segmenta-
tion differences between image pairs, which is not provided by the VI 
metric. VI combines split and merge errors. The two error measures 
are defined by comparing the entropy of three segmented images33, 
S1 ∈ LN1 , S2 ∈ LN2  and S1 × S2 ∈ LN1 × LN2 , for two N-pixel labeling (instance 
segmentation) S1 and S2 that needs to be compared, where the Ls  
represents the sets of pixel labels. The segmented image S1 × S2 is 
labeled by concatenating the labels from S1 and S2 for each pixel.  
The VI is then the sum of two error terms VImerge and VIsplit

VImerge = H(S1 × S2) − H(S1),

VIsplit = H(S1 × S2) − H(S2),

VI = VImerge + VIsplit.

(1)

Due to the additivity of the entropy measure33, VImerge and VIsplit 
can be broken into individual constituents, representing the amount 
of error contributed by each individual label in each segmentation. We 
could thus rank objects in each segmentation according to the amount 
of variation they contribute to overall VI (Supplementary Fig. 1). The 
error contributed by the set of pixels that are both in segment s1 ∈ S1 and 
s2 ∈ S2 (that is, the error contributed by a segment in S1 × S2) is

W(s1 ∩ s2) −W(s1)

and

W(s1 ∩ s2) −W(s2),

for the split and merge errors, respectively, where W(A) = − |A|
N
× log |A|

N
, 

∣A∣ is the number of pixels in A and N is the number of pixels in the image.
Once the substantially incompatible objects are detected in each 

segmentation, we used image processing to delineate the borders that 
are responsible for the topological differences between the two seg-
mented images (Extended Data Fig. 2). We then produced binary masks 
from these errors and trained neural networks (ERRNET) to detect 
them directly from border probability maps, themselves produced 
by another neural network (FASTEM2B). Detecting borders allows 
our technique to disregard small ‘cosmetic’ variations between two 
segmentations that do not cause meaningful topological differences.

Standard dwell time for high accuracy segmentation
The goal of the SmartEM pipeline is to reach the same segmentation 
accuracy as a standard SEM when using a uniform long-dwell-time scan-
ning regime, but acquiring the images in much less time. To accurately 
assess the improvement of SmartEM over a standard SEM imaging 
regime, we needed first to determine the shortest uniform dwell time 
that leads to accurate segmentation (for example, 800–1,000 ns per 
pixel in the example in Fig. 1b).

To accomplish this, we trained a neural network called SLOWEM2B 
to perform automatic border prediction in long-dwell-time-acquired 
images. We collected a diverse subset of long-dwell-time images  
from random locations in a specimen, typically twenty 5 × 5 μm2 tiles, 
and performed manual segmentation by an expert to create training 
data for SLOWEM2B.

Next, we used SLOWEM2B to train a different neural network 
called EM2B that was capable of predicting borders with either long- 
or short-dwell-time images. Because the SEM allowed for reimaging 
the same regions at different dwell times, it was possible to guide 
the microscope to collect a large sample of EM images from different 
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random locations in the specimen, using different dwell times ranging 
from 25 to 2,500 ns per pixel, as shown in Fig. 3. SLOWEM2B was applied 
to the long-dwell-time image at each location to automatically create 
segmentations that we could use as ‘ground truth’ to train EM2B to 
predict segmentations in both long- and short-dwell-time images. Both 
SLOWEM2B and EM2B were implemented using a U-Net architecture.

SLOWEM2B and EM2B calculated the trade-off between pixel dwell 
time and segmentation accuracy. EM2B was used to automatically 
segment all dwell-time images (for example, from 25 to 1,000 ns per 
pixel for the mouse cortex dataset) and compare them to a reference 
automatic segmentation corresponding to the longest-dwell-time 
image (for example, 1,200 ns per pixel image). Thus, it was possible 
to identify the shortest dwell time for which mean accuracy across 
tiles was not further improved by longer-dwell-time imaging. This 
minimum dwell time was defined by SmartEM as the required dwell 
time to achieve agreement with the longest-dwell-time segmentation.

Determination of maximal segmentation quality. We developed an 
unbiased estimate for the minimal dwell needed for 2D segmentation. 
We compared segmentations from N images for each pair of dwell times 
d1 < d2 and an overly slow dwell time dref. We asked whether the VI of the 
d2 images was significantly smaller (P < 0.05; Wilcoxon signed-rank test) 
than d1 images compared to dref images. When two dwell times were 
not sufficiently different, we called them equivalent. We defined the 
minimum dwell time with near-maximal segmentation ability as that 
dwell time beyond which VI does not improve.

Image normalization and augmentation
To train the FUSEDEM2B network, we used the CLAHE51 normalization 
with clipLimit = 3 to bring all images to a common color space. We used 
on-the-fly rotation, flip, translation to augment the images in the train-
ing set. Although images are naturally 2,048 × 1,768, we subsampled 
256 × 256 squares to train the network. To allow the network to deal 
with images with multiple dwell times, we randomly replaced patches 
at random locations with different dwell times (Extended Data Fig. 1). 
Specifically, each sample was generated by choosing a baseline image at 
a single dwell time and replacing up to 30 patches with a maximum size 
of 11 × 11 pixels with the corresponding pixels of an image with longer 
dwell time. To train ERRNET, we normalized border probabilities to [0,1] 
as an input to the network. We used the same procedure for on-the-fly 
translation and rotation but did not replace patches.

Accuracy optimization with fixed time budget
We fixed the total imaging time budget for a given specimen. From this 
requirement, the pixel dwell time was determined after subtracting 
overhead factors (such as image focusing, astigmatism correction 
and mechanical stage movement) from the total budget. For example, 
the user might need to image a given specimen—100 × 100 × 100 μm3 
tissue, cut in 30-nm-thick sections, imaged at 4-nm spatial resolution—
within 5 days of continuous EM operation. These constraints determine 
the average dwell time per pixel:

(5 × 24 × 3,600 sec)(42 × 30nm3)
(100μm)3

= 207.36nsper pixel.

For a standard EM pipeline, 207.36 ns per pixel becomes the homo-
geneous pixel dwell time. For the SmartEM pipeline, the initial scan and 
rescan of all error-prone regions should sum to an average of 207.36 ns 
per pixel. This average dwell time, which we call effective dwell time, 
can be achieved with different combinations of initial dwell time, rescan 
dwell time and percentage of rescanned pixels:

Teffective = Tinitial + α × Trescan

where T represents dwell times.

For example, an effective average dwell time of 207.6 ns per pixel is 
achieved with an initial dwell time of Tinitial = 100 ns per pixel, rescan rate 
of α = 5% and rescan dwell time of Trescan = (207.36 − 100)/0.05 = 2,147.2 ns 
per pixel. These parameter settings correspond to a specific segmenta-
tion accuracy (VI) relative to the reference homogeneous long-scan 
image. SmartEM considers a grid of parameter settings and calculates 
the Tinitial, Trescan and α settings that produce maximal accuracy (minimal 
VI) compared to the segmentation of reference tiles, while guarantee-
ing the effective dwell time.

Optional image homogenization
The SmartEM pipeline produces composite image with pixels acquired 
at different dwell times. A human observer will note contrast differ-
ences at interfaces between pixels with different dwell times. To 
increase human image interpretability, we built an image translator 
component that homogenizes SmartEM images to look like standard 
EM images with uniform dwell times. Extended Data Fig. 7 shows a 
specific example: a fused EM image that is a mosaic of subimages with 
different dwell times. To mitigate dwell-time contrasts and produce a 
visually coherent image, we applied a conditional generative adver-
sarial network (IMAGEHOMOGENIZER, cGANs)52. Previous studies 
used deep learning to improve the quality of microscopy images32,53–55, 
denoise EM images31 and perform image reconstruction across differ-
ent modalities56. IMAGEHOMOGENIZER contains two convolutional 
neural networks (CNNs): a generator and a discriminator57. Training 
data are a composite image and a uniformly long-dwell-time image, 
where the composite image is generated by randomly combining 
pixels from short-dwell-time and long-dwell-time images in different  
proportions (Fig. 5b–d, where the composite images consist of  
75- and 600-ns-per-pixel dwell times). As shown in Supplementary Fig. 5, 
during the training process, the generator translates the simulated 
composite images to resemble long-dwell-time images, and the dis-
criminator attempts to distinguish the translated images from real 
long-dwell-time images. The training process utilizes L1 loss and adver-
sarial loss. After image homogenization by the generator, the fused EM 
images are more suitable for human inspection and retain the visual 
details of fine ultrastructure (Extended Data Fig. 7).

Synapse segmentation and neuronal reconstruction
Neuron reconstruction technique. To reconstruct neurons in 3D, 
we applied a lightweight segmentation method that we previously 
used to reconstruct neurons from the same sample imaged by a multi-
beam SEM14 and tissue prepared using a whole-mouse-brain-staining 
technique10. First, pixels straddling intracellular spaces were pre-
dicted by a CNN, based on the pretrained FUSEDEM2B network. To 
improve the network accuracy, we fine-tuned FUSEDEM2B using 
thirty-six 1,024 × 1,024 SmartEM tiles obtained from random loca-
tions in the target volume and annotated by an expert. Predictions 
from FUSEDEM2B were used as a starting point for the annotation 
process of the training set. All sections were segmented in 2D using 
the fine-tuned network and watersheds58. Second, a CNN was trained 
to predict from the EM the medial axis of all objects in 2D. This process 
required no additional human annotation. Third, 2D object segments 
were agglomerated across sections based on shape alignment and 
similarity. In addition, 2D segments were agglomerated if their medial 
axes were well-aligned using a fixed threshold determining large 
overlaps. Fourth, agglomerated objects containing a large number 
of adjacent 2D segments were flagged as objects with possible merge 
errors. This was done by building a regional adjacency graph whose 
nodes were 2D segments and edges represented spatial adjacency. 
Then these objects were reagglomerated iteratively from the origi-
nal 2D object segments until the merge-error criterion was attained  
using an iterative clustering technique59. Fifth, orphans were detected 
and connected to other orphans or non-orphan objects based  
on their best estimate from the agglomeration graph: that is, 
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connecting them to objects that did not pass the agglomeration 
threshold in the first iteration. The results of the reconstruction are 
shown in Fig. 6c.

Criterion for filtering dendritic spines. Three dendrites were 
randomly selected for quantitative analysis. We defined correctly 
segmented spines as spines whose segmentation included their 
synapse-containing regions. Incorrectly segmented spines were split 
errors that occurred before the synaptic region. To avoid confusing 
spines with dendritic filopodia, we excluded putative spines from 
analysis if no potential synapse was contained in the image volume. We 
observed three types of error: Type 1 errors occurred when the spine 
was prematurely truncated by a split error that occurred before the 
spine’s corresponding synapse that was not due to an obvious image 
artifact (for example, tissue preparation, folds in the section). Type 
2 errors occurred when the spine was not tracked at all due to a split 
error at its base on the dendrite that was not due to an obvious image 
artifact. Type 3 errors occurred when the spine was lost due to an obvi-
ous artifact. We observed such errors caused by local aberrations in 
tissue preparation in sections 56, 65, 66, 77 and 88. The distribution 
of incorrect spines and their corresponding error type is shown in 
Supplementary Table 1. To characterize only errors that might be 
associated with the SmartEM technique, we excluded the rate of Type 
3 errors from consideration.

Synapse reconstruction technique. Synaptic active zones were 
manually segmented in VAST60 and agreed upon by two expert anno-
tators. Two ground-truth volumes, GT1 and GT2, were generated, 
of sizes 7 × 3.5 × 3 μm3 and 4 × 4 × 3 μm3, respectively. A U-Net was 
trained on GT1 to predict active zones from EM images via the PyTorch 
Connectomics library61,62. To avoid edge effects, the trained network 
was applied on a padded version of the EM from GT2. A threshold of 
0.8 was applied to the outputs of this network, followed by 3D con-
nected components with 26-connectivity using the cc3d library63. We 
removed segments that were smaller than 400 voxels. All parameters 
for post-processing were determined without studying the statistics of 
GT2; the voxel threshold was obtained by rounding down the smallest 
segment size in GT1. The results were finally cropped to account for the 
fact that the EM input was padded.

Validating synapse reconstruction. To assess synapse segmentability, 
we replicated CONFIRMS64,65, a quantification tool developed for EM 
pipeline validation. In short, synapse segments were converted into 
keypoints by determining the location of their centroid and matched 
according to the distances between these keypoints. The matches 
were manually verified in neuroglancer. When the matching algorithm 
incorrectly assigned a synapse a certain label (for example, a synapse 
was assigned false positive when it was really a true positive), it was cor-
rected by experts. We made corrections conservatively to the results of 
the matching algorithm. For example, if expert annotators saw a false 
positive but believed it to be an ambiguous synapse, it was still treated 
as a false positive. The precision, recall and F1-scores were calculated 
after these corrections were made.

Image stitching and alignment
The stitching and alignment of the sample volume were performed 
on composite dwell-time images. After applying a band-pass filter to  
raw images, we used conventional block-matching technique to  
obtain matching points between neighboring images, from which  
elastic transformations mapping the raw data to the aligned volume 
were computed by mesh relaxation. Code for stitching and alignment 
is available on GitHub at https://github.com/YuelongWu/feabas. We 
applied the same stitching and alignment transformations to the 
fast, composite and homogenized images to produce three sets of 
final volumes.

Sample preparation
Three samples were used in our experiments. These were (1) a previ-
ously studied mouse cortex14, (2) a previously studied human temporal 
lobe16) and (3) a high-pressure-frozen male C. elegans. The preparation 
of the male C. elegans is described as follows. Several C. elegans males 
were transferred from a mixed-culture plate (N2 wildtype strain) to a 
separate plate seeded with E. coli OP50, where they were kept for 16 h 
before high-pressure freezing. L4 larvae were selected, and they all 
became adults by the time of high-pressure freezing. For high-pressure 
freezing, we used gold-coated copper carriers (16770152 and 16770153, 
Leica), which were soaked in a 2% lecithin in chloroform solution and 
allowed to dry to render their surface non-stick66. Live C. elegans males 
were transferred from the culture plate to the carrier together with 
a small amount of E. coli substrate. The samples were then frozen 
using a high-pressure freezer (EM ICE, Leica). This was followed by 
freeze-substitution, which was carried out in a programmable unit (EM 
AFS2, Leica) using a solution of 1% ddH2O, 1% OsO4 and 1% glutaralde-
hyde in acetone at −90 °C for 48 h, after which the temperature was 
increased by 5 C° per hour until it reached 20 °C (ref. 67). The sample 
pellets were then washed with acetone (three times) and infiltrated 
with 50% Epon in acetone for 1 h, 75% Epon in acetone overnight and 
100% Epon for 1 h (the last step was repeated twice) and finally cured 
at 60 °C. The samples were imaged with microCT to check for major 
cracks. Thirty-five-nm sections were cut and collected on kapton tape 
using a Leica EM UC6 ultramicrotome and ATUM section collecting 
device7,68. The tape with the sections was mounted on silicon wafers, 
and the sections were then post-stained with uranyl acetate and lead 
citrate as described in ref. 68. The samples were kept under vacuum 
for at least 24 h before imaging to minimize any beam-related damage 
due to residual water.

Statistics and reproducibility
All statistical tests were done using the Wilcoxon signed-rank test  
for paired samples. The test was used to assess the cases where  
two dwell times produce similar segmentation quality by comparing 
the VI of individual samples to a single reference taken at a longer 
dwell time.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All SmartEM datasets and ML models are publicly available via a BossDB 
Project Page (The Brain Observatory Storage Service and Database) at 
https://bossdb.org/project/meirovitch2025 (ref. 69).

Code availability
All code necessary to implement SmartEM has been made avail-
able via GitHub at https://github.com/cfpark00/SmartEM under an 
MIT License.
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Extended Data Fig. 1 | Dwell time rescan data augmentation. Rows 1-5 show 
different locations in the EM sample. Columns 1-4 show different augmented 
composite images that were taken at different dwell times; short dwell time pixels 

in blue, representing 25 ns/pixel scans; long dwell time pixels in red, representing 
1200 ns/pixel. Column 5 shows the ground truth classes for each region that were 
obtained from the long dwell time neural network (SLOW2EM).
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Extended Data Fig. 2 | The discrepancy between segmentation with long dwell 
time (using SLOWEM2B) and short dwell time (using FASTEM2B) based on VI.  
VI is the sum of individual error terms contributed by each object in the two 
segmented images. The most variable objects are flagged. Image processing is 
used to delineate specific borders that appear in only one segmented image. 
Yellow represents segmented objects that are uniquely predicted in the long 

dwell time image. Red represents segmented objects that are uniquely predicted 
in the short dwell time image. A neural network (ERRNET) is trained to predict all 
red and yellow discrepancies only using short dwell time images. This is possible 
because variation occurs where border predictors are uncertain and often with 
typical, at times biologically implausible, border prediction.
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Extended Data Fig. 3 | Composite EM images fusing short and long dwell time 
regions are better segmented compared to short dwell time images. We tested 
in the mouse cortex datasets whether replacing short dwell time error-prone 
regions with longer dwell time scans improves the ability to segment. Error of the 

instance segmentation is assessed in terms of the Variation of Information (VI) 
compared to the segmented reference image, where VI is composed of a merge 
and split error terms as in equation (1).
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Extended Data Fig. 4 | Distribution of segmentation error differences 
(standard minus SmartEM) across datasets/species. The C. elegans nerve 
ring (top), mouse cortex (middle), and human temporal lobe (bottom) - each 
collected using a homogeneous and a time-matched SmartEM dwell time. 
Parameter settings for each case (effective dwell times, initial dwell times, rescan 

dwell times, and rescan rates) are shown in the panel titles. Each distribution 
plots the Variation of Information (VI) error from the standard pipeline minus 
that from SmartEM for a collection of N images; positive values indicate lower 
error in SmartEM.
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Extended Data Fig. 5 | Synapse detection in ultrafast (25 ns), fast (75 ns) and slow (800 ns) dwell time. The output of EMINCLUDE is depicted for multiple dwell times.
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Extended Data Fig. 6 | Data-aware imaging of synapses at long dwell time. SmartEM takes a short dwell time image (50 ns/pixel), predicts locations that contain 
synapses, and rescans these regions at long dwell time (1200 ns/pixel). The blue overlay presents synapse predictions by EMINCLUDE. Yellow outlines represent 
locations for rescan based on dilation of EMINCLUDE predictions.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02929-3

Extended Data Fig. 7 | Examples of image homogenization by IMAGEHOMOGENIZER. Left column: composite EM with two dwell times (75 ns/pixel and 600 ns/pixel). 
Middle column: homogenized EM from composite EM. Right column: slow EM (600 ns/pixel). Red arrows indicate the locations with slow dwell time of 600 ns/pixel in 
composite EM.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Data collection We used Thermo Fisher "AutoScript 4" API combined with Python and MATLAB to control the microscope. Collections was aided with in-house 
trained models in MATLAB and PyTorch.

Data analysis We analyzed the data in MATLAB and Python. 
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All SmartEM datasets and machine learning models are publicly available through a \href{https://doi.org/10.60533/boss-2023-4w35}{BossDB Project Page} (The 
Brain Observatory Storage Service and Database) \citep{hider_bossdb}. 
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Sample size We collected datasets from three organisms and segmented them across an entire wafer. For each specimen we conducted analyses within 
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based on the imaging time and the speedup analysis parameters, both are slow procedures due to the slow pace of EM imaging and the large 
augmentation of the ML models. In any event, we made sure N was larger than the number of sections but without repeatidly sampling from 
the same section to maximize variability.  

Data exclusions Blurry images were excluded from the speedup analysis or areas that do not contain neuropil that is relevant for the connectomics question. 

Replication Our data are available for segmentation experiments, and wafers can be re-imaged for reproducibility purposes. 

Randomization We heavily relied on randomization both of the section ID and the X/Y location within a section. 

Blinding Investigators who rejected blurry images were not aware of the effect these regions would have on speedup. 
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Laboratory animals We used a male C. elegans, N2 Bristol strain. Other data in this study were based on animal preparation from previous studies.

Wild animals N/A

Reporting on sex Sex was not considered. 

Field-collected samples N/A

Ethics oversight No ethical guidance needed for C. elegans. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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